AUTHOR	Evans, Diane
TITLE	Learning Activity Package, Algebra 93-94. LAPs 12-22.
INSTITUTION	Ninety Six High School, S. C.
PUB DATE	[73]
NOTE	164p.; See ED 069504 for related document
EDRS PRICE	MF-\$0.75 HC-\$7.80 PLUS POSTAGE
DESCRIPTORS	*Algebra; Analytic Geometry; Curriculum;
	*Individualized Instruction; *Instructional
	Materials; Mathematics Education; Number Systems; Objactives; *Secondary School Mathematics; Set
	Theory; Teacher Developed Materials; Teaching Guides;
	Units of Study (Subject Fields)
IDENTIFIERS	*Learning Activity Package

ABSTRACT
A set of 11 teacher-prepared Learning Activity
Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and polynomials, functions, and equations and their applications. Each unit contains a rationale for the material; a list of behavioral objectives; a list of resources including texts (with reading assignments and problem sets specified). tape recordings, commercial games, filmstrips, and transparencies; a problem set for student self-evaluation; suggestions for advanced study; and references. (DT)

RATIONALE

The purpose of this LAP is to introduce the fundamental theorems of exponents and radicals. At this stage you will not be expected to prove these laws, but will discover them chrough observing existing patterns. Familiarity with these theorems is an important prerequisite for the learning of factoring, extension of the concept of function, and in using scientific notation.
A wide variety of experiences will be provided to enable you to associate the basic theorems of exponents to their application either in mathematics or science. The laws will be extended from natural number exponentsto negative exponents. Rational and real exponents will be left to a later date. Scientific notation will be used 1 n demonstrating application of exponents.

SECTION 1

Behavioral Objectives

At the completion of your prescribed course of study, you
will be able to:

1. Given any number written in exponential form, write it as a product where the factors are alike.
2. Given any number expressed in exponential form, name the base and the exponent.
3. Use the product of powers pronerty ($\forall x \in R \forall m n \in N X^{m} \cdot X^{n}=X^{m}+n$) to rename any given product of powers so that no base is used more than once. (Simplify).
4. Given any rational number, and a base, write the rational number in exponential form using the given base.
5. Given any number expressed in exponential form (power of a base), quite it as a decinal numeral.
6. Given two or more monomial expressions of the form $a^{m} \cdot a^{n},\left(a^{m}\right)^{n}$,
$\frac{a^{m}}{a^{n}},\left(\frac{a}{b}\right)^{n}$, or $(a b)^{m}$, use the laws of exponents together with the associative and commutative properties of multipiication to rename it as an equivalent expression.

RESOURCES

Objectives 1, 2, 3, 4

Nichols, read pp. 312-314, Ex. 2, 4 every other letter, 3 a, c pp. 314-315.

Vanatta, read pp. 69, 113-114, Ex. 1-18 page 114.
Dolciani, read p. 203, Ex. 1-24 page 204.
Payne, read pp. 257-259, Ex. 1-25 odd, 33-41 odd pages 259-260.
Pearson, read pp. 340, Ex. $1-5,6 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{j}, \mathrm{k}, 1,7 \mathrm{a}, \mathrm{b}, \mathrm{c}, 8 \mathrm{a}, \mathrm{b}, \mathrm{i}, \mathrm{j}, 1$, 10 page 341.

* Appendix I

Objertive 5
Nichols, rea: pF. 312-313, Ex. 1 a-f page 314.

Objective 6

Nichols, read pp. 315-319: Ex. 1-3 every other letter page 316;
1,2,5,6 every other letter page 317;
1,2 every other letter page 318;
$1 \cdot 10$ page 319.

1-12 top page 117;
1-23 ever page 117;
Dulciant. reat pp. 204-205, 215-217, Ex. 1-16 even page 205; 1-10 مrge coh; 1-24 even top page 218; 1-10 page.; 218-219.

Hayne, read pp. 260-265, Ex. pages 262-264 every number divisible by 4; 1-41 odd page 266.

Wooton, read pp. 315-319, Ex. 1-45 odd page 271.
Pearsun, read pp. 342-343, 347-349, Ex. 1 every otleer letter, 2 page $342 ; 1,2,3$ every other letter page $343 ; 1,2,3$ every other letter, 4,5,6 pages 345-346.

Introcuction to Exponentsi frames 80-141
197-205
218-220

OBJECTIVE 1. Solve by tr: QOMPARISON method.

1. $3 x-10=v ; y=4 x$
2. $x=12+2 v: x=3+3 y$
3. $x+y=10 ; 2 x+21=20$
4. $\frac{1}{2} x=y ; y+\frac{3}{15} x=7$
5. $x+y=\frac{25}{2} \quad \frac{x}{2}+\frac{y}{2}=5$

ORJECTTVE 2 SOlve by SURSTITUTION method.
غ. $7 x+9 y=1 i: x+y=2$
7. $x+y=20 ; y=2 x+5$
8. $3(x+2)+3 y=21 ; x+2 y=8$
9. $3 x-2 y=15 ;-x=2-4 y$
10. $2 x-3 y=17 ; x+4 y=3$

ORJECTIVE 3. Solve by ADDITION method. Check by substituting your solution in each problem.
11. $x+y=5 ; 2 x-y=7$
12. $8 x-3 y=15 ; 13 x-3 y=15$
13. $4 x+3 y=14 ; 9 x-2 y=14$
14. $2 x+3 y=12.4 ; 4 x+-6 y+3 y=-5.8$
15. $3 s x+2$ ty $=-5 s t \quad 4 s x+-5 t y=24 s t$

ORJECTIVE 4. Find the EQUATICINS and solve.
(Che Variable)
16. John hes twice as many nickels as quarters and 3 ewer dines thar quarters. The sum of the values of the coins is $\$ 1.95$. Find how many of exch kind of coin he has.
17. A su'tion cf salt and waton welche 100 lbs and it is 10% salt. fifow nurich serser mis: evagosate to leave the solution at 30\% salt concent. asions;
18. Two cars start tagether in capabto directions, one at 40 mph , the otlie: at 50 n inh ficw lory will it be biefore they are 300 mites apart?

Solve 10-23, Usisis Two Varlableo.
19. Thu sum o wo numbers is 19. Thelr difference is i.
20. The sum of two numbers is 20. Twice one is 3 tlmes the other.

2i. A rectangle is twice as long as it is wide. The sum of length and wich is 9.
22. Jchn's age now is 2 luse than twise his oister Sue's age. In five yeares John's age ivill oquel 3 thmes Sue's age now.
23. A pla: flies 360 mph with the wind and 270 mph against. what is the syeed of the plane in oill ain? What is the wind speed?

U. its are in thousands of viloretors.

The spacecraft have only ONE opportunity for a rifd-cmurese rendenvolis for supplies and fueling.

1. Two spur: nit A ex d E are going to Mars. Spacesrat A conthins men $f:$: 1 tit t equipment, : Spaceoraít 13 contains fuel, heavy

Question: At what point do the ships rendezvous?
Note: Spacecraft A path: $x-2 y=-1$
Spacecraft E path: $3 x-4 y=28$
2. A man entering a force of 150 pounds and using a lever 6 feet long would te able to life a weight of how many pounds if he placed tree fulcrum 2 feet from the weight?
3. A man in an automobile is travelling 5 times as fast as a boy on a bicycle. The time required by the boy in going 40 miles is 3 fours greater than that recilired by the man going 50 milos. What is the rate of travel of the boy?. of the man?
4. Job Problems (These problems are best done on a one-day-totalcost job basis) eng.

If John does the job in 3 days and Sue in 4 days, low long will it take them to do it together?
5. Vanatta, page 252 , nos. 9,10 .
6. Dolciani, page 377, nos. $19,20$.

REFERENCES

Vanatta(abbreviation)
Vanatta, Glen D., Goodwin A. Wilson, Algebra One, AModern Course, Charles E. Merrill Publishing Co.,1966.
Nichols (abbreviation)Nichols, Eugene D., Modern Elementary Algebra, Holt,Rinehari and Winston, Inc., 1965.
Pearson (abbreviation)
Pearson, Helen R., and Alleı, Frank B., Modern Algebra:A Logical Approach, Ginn and Colipany, 196!.
Payne (abbreviation)Payne, Joseph N., Zamboni, Floyd F., Lankfurd, Jr.,Francis, Algebra One, Harcourt, Brace and World,Inc., 1969.
Wooton
Dolciani, Mary P., Wooton, William, Beckenbach, Edwin F.,Jurgensen, Ray C., Donnelly, Alfired J., Modern SchoolMathematics, Algebra 1, Houghtor:, Mifflin Company, 1967.
Dolciani (abóreviation)Dolciani, Mary P., Berman, Simon L., Freilich, Julius,Modern Algebra, Book 1, Houghton Mifflin Co., 1965.
Wollensak Teaching Tapes: C-3809

RATIONALE

Abstract

In your previous L,AFs you have been solvine applied problems by using linear equations and inequalities involving one variable. Actually, most applied protiems can be solved in this manner, dependine upon your ingenuly! There are instances Where i^{t} is preferable to use two variables rather thari ane. This requires that you the able to solve systems of linear equations and inequallies.

In L.AP 8, you had some experience in finding solution sets to systems of linear equations and Inequalities, through the use of graphing. You also found that the "eraphing technique" was of limited value since your resulis were only approximations of the correst solutions.

Ir: this ! AP, you will be learning more precise techniques of computing the solution sets for systems of linear equations and riequalities. This will enalle yo: to solve applied problems, using two variables ratior than ore!

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:

1. Given a pair of linear equations in two variables, compute their solution set using the COMPARISON method.
2. Given a pair of linear equations in two variables, compute their solution set using the SUBSTITUTION method.
3. Given a pair of linear equations in two variables, compute their solution set using the ADDITION method.
4. Given a word problem, TRANSLATE it into an OPEN mathematical sentence (or coitences) and SOLVE for the UINiKNOWN (or unl:nowns).

RESOURCES

Obj. 1
Nichols, read pp. 293-297, Ex. 1 all parts pages 297-298.
Games: Graphing Pictures nos. 11, 6, 22

Obj. 2
Vanatta, read pp. 249-250, Ex. 1-8 pejes 250-251.
Dolciani, read pp. 378, Ex. 1-18 even page 378.
Nichols, read pp. 299-300, Ex. 1,2 page 300.
Payne, read p. 235, Ex. 1-18 even page 236.
Wooton, read pp. 240-242, Ex. 1-18 cien page 243.
Pearson, read pp. 477, Ex. 1,2 page $9^{\prime \prime}$.
Games: Graphing Pictures: nos. 11, 6, 22.

Obj. 3
Vanatta, read pp. 246-248, Ex. 1-4 page 245; 5 -10 page $246 ; 1-4$ page 248.
Dolciani, read pp. 370-371, 374-375; Ex. 1-18 ever page 372; 1-18 even page 376.

N1chols, read pp. 301-303, Ex. 1,2 page 303.
Payne, read p.!. 227-22․ 6\%. 1-10 p. 250.
Wooton, read pp. 236-238, 1-31 even page 2.39.

Obj. 4
Vanatta, read p. 253, Ex. 1-7, 11-15 pages 253-254.

* Dolciani, read pp. 372-373, Ex. 1,3,5,6 page 373; 1-4 page 374; 2,3,4 p. 379; 1-3 page 311; 1-3 pige 385 .
Wooton, read pp. 244, 247-248, Ex. 1-20 p. 245; 1-22 e:'en pages 250-2i1.
Pearson, read pp. 482-483, Ex. 1-3, 6, 17, 21 pp. 484-486.
Wollensak tape C-3809
Nichols, read pp. 228-232, 305; Ex. 1-18 cven pages 232-234; Ex. 11,12 p. 238; 4 p. 4u3.

$$
\vdots: \because \because
$$

OBJECTIVE

1 I. Wrate thervirch.e日. .

```
%:
```

... : : in :... , wara

$$
\therefore \text { :it ye: whous names }
$$

$$
\text { inecto }=11 .
$$

v: Emacouy

$$
\text { rixponde ard } 12 .
$$

$3 \quad r i$
Pe i:'... ; . A"

. An: Ha 4nan 4$\}$
$\because, i a . \operatorname{in}$,

:1: 16

-......................
-......................

4 IV. Matc: t. :

$$
\operatorname{mon}
$$

-

BEHAVIORA! : •sif

PST
 coor
 Alamplere

```
Ohjo:"."
Manatta, \therefore \:-
? ')at
Fd.1!.
|
fM!:*"
Hoot: , re.
F.ar:
'1'
!!'`i.f
ba..".
Mich:j.:.
Pearsi., , % . :
!ntrol:\cdots....
ho!ienea;
Objec:": : :
Nichols, ra:
Intradret: :"
Objecıir:
Pay:" :?,
Niche::. ; .
Pear
Intrudg:i
Wollems:% ?
```


OBJECIIVEs

:1,1? J.

-.--
. . .
\square

 \therefore •a: Ma 3al . $8:$

1 : 0.

\cdots - $\therefore 0$?

$$
\begin{aligned}
& 8=\{1, \therefore 5,7 \ldots\} \\
& \{2,3,7 \ldots\} \\
& \{i 5,51, \ldots 99,100\} \\
& \therefore=\therefore, \therefore, 10 j
\end{aligned}
$$

- 13.14.15 it LKt

. 1 ! \because
($\cap \cup$ L) $\cap \mathrm{c}$
\therefore ane of these
$\because .$. se:.ded Aree iq

$\therefore \quad(A \cup B) \vec{C}$

$\therefore \quad(\ddot{A} \cap \bar{B}) \cup \bar{C}$

 $\ldots \quad \therefore \quad \therefore \quad \therefore \quad \therefore \quad \because \quad$ amater of B is also a member
\qquad
\qquad

\qquad
-...
$\because \because \quad \because \quad . \quad: \therefore r$
The i ! atp

 \therefore ar., \because^{2} : 13

\therefore
rem.

4. ... :
: :


```
        &-
```



```
        <....":.":
```



```
            ; \therefore., 泣:%, !...: % Godem Bchool
                        #
```



```
        .4..
```



```
    %n.:
```



```
.u:a!
```


Mathematics can be thought of as a game in which you perform moves by specific rules. For example:

WHAT NUMBER IS EQUAL. TO $4+3 \times 5$?
You may work it out this way:

$$
4+3=7 \times 5=35
$$

or you may compute it this way:.

$$
3 x 5-15 \text { and } 4+15=19
$$

As you can see there are two possible answers!! Obviously, both ways cannot be correct because 35 is not equal to 191 The expression $4+3 \times 5$ must have only one meaning! It is customary to use parentheses, which are mathematical punctuation marks, to make the meaning of such phrases clear.

In this LAP you will not only isarr hov: parentheses are used but also about the "order of operations" that is the order in which certain operations are to be performed. Though you have studied the properties of operations in the past, you will review them again because of their importance in learning mathematics.

Behavioral Objectives
Upon completion of your prescribed course of study, you will be able to:

1. Write the simplest name for any nurnerical expression which involves the use of erouping symbols and order of operation.
2. Given any mathematical sentence, identify which of the following properties (if any) are being illustrated.
a) The Commutative Froperty of Addition (CPA)
b) The Commutative Property of Multiplication (CFM)
c) The Assoclative Property of Addition (APA.)
d) The Assoclative Property of Multiplication (APM)
e) "Symmetric Eroperty of Equality" (SPE)
i) "Distributive Eroperty of Multiplication over Addition" (DPMA)
3. Glven any set, determine if it is closed with respect to a given operation
4. Glven any mathematical senterice, ldentify which of these properties (if any) are being illustrated.
a) Multiplicative identity
b) Property of one for Division (EPD ()
c) Additive identity
d) Property of Zero for Multiplication (PZM)
5. Given any mathematical sentence, dentify which of the following properties is being illustrated:
a. multiplicative inverse
b. additive inverse
6. Given any mathematical sentence fnvolving lent sentence using the inverse opurationg.
7. Given any word phrase, of the type in Aprraix I, tuaslate it into an equivalent mathenatial itiane.
8. Correctly write a rathematical sentence on the $t y_{i}$ in inpendix II which would be used t: sulve a given wert problem.

NOTE: (EOL means every other letter.)

Objective 1
Vanatta, read pp. 47-48, Ex. 1-4 page 47.
Dolciani, read p. 23, ix. 18-20, 30-34 page 24.
Nichols, read no. 31-33, Ex. 1-25 odd pages 33-34; 2 EOL page 37.
Payne, read paye 18, Ex. 1-5 page 18.
Wooton, read pp. 10-16, Ex. 1-10, 25-32 pages 13-14; 1-10 odd, 17-29
odd pages 15-16; 1-10 page 51.
Pearson, read pages 52-59, Ex. 1-25 odd page 55; 1-3 EOL pages 56-57; 1-5 EOL page 58.

Objective 2

Vanatta, read pp. 27-33; Ex. 2, 7, 10 paye 29; 13, 18, 19, 24 page 34; 14, 15 page 37; 14 page 30 ; 6, 20 page 34.
Dolciani, read page 69, 73-76; Ex. 1-26 page 74; 15, 16 pages 100-101; 1, 6, 7 page 70; 2 page 98.
Nichols, read pages 34-37, 40-46; Ex. 1 page 37; 1 EOL, 2 pages 40-41; 1, 2 EOL, 3 pages 42-43.
Payne, read pages $31-38$, Ex. 1, 3 page 33; 1-51 odd pages 35-37.
hooton, read pages 48-52, 55-59, 71-76; Ex. 11-28 pages 50-51; 1-6, 723 odd pages 57-58.
Pearson, read pp. 139-145, 166-169; Ex. 1-14 pages 141-142; 1-3, 4 EOL, 5, 6 pages 144-145; 1-4 EOL, 5-7 pages 168-169.
Wollensak C-3453 The Commutative Property C-3454 The Associative Property C-3455 The Distributive Property

Objective 3
Dolctani, read pages 70-71, Ex. 1-14 oral p. 12; 1-12 written page 73. Nichols, read pages $37-39$, Ex. odds page 39; 4 a, c, e page $51 ; 8$
(state why or why not) page 53.
Payne, read page 31; Ex. 62-73 pages 37-38. Wooton, read page 47, Ex. 1-10 pages 49-50. Pearson, read pages 135-137, Ex. 1-12 pages 136-137. Wollensak C-3456 The Closure Property

Objective 4, 5
Vanatta, read page 27 and study $2-5$, page 28 study $2-5$; Ex. 1, 4, 8, 9 page 29; 12, 13 page $30 ; 15-17,21,22$ page $34 ; 17-19$ page 37. Dolciani, read pages $77,121,138$; Ex. $33-42$ page 141; 1-10 oral page 122.

Pearson, read pages $162-166,178-180$, 204; Ex. 1, 2 EOL, 3, 5-7 EOL, 9 pages 164-166; $2 a, b, e, f, g, 5 a-h$, page 165, 3 a-e, 4 a-d, g-i page 296.
Wollensak C-3459 identity Elemen:
C-345i The Inverse Element

Nichols, read pages 46-48, Ex. 1-3 EOL pages 47-48.

Objective 7

Dolciani, read p. 51, Ex. 1-22 pages 52-53; 1-25 even page 54; 3, 6, 13, 14 page 55.
Nichols, reád pages 48-49, Ex. 1-21 page 49. Wooton, Ex. 11-24 page 13; 11-16 page 16. Pearson, read pages 145-147, Ex. 10-13 page 147.

* Appendix I

Objective 8
Vanatta, read pages 154-156, Ex. 1-10, 12-15 pages 156-157. Dolciani, read pages 57-58, Ex. (write equation only) 1-14 odd pages 57-58; 1-14 page 18.
Payne, read pages 65-66, Ex. 21-23 pages 65-66. Wooton, read pages $29-33$, Ex. $31-38$ page 33 (equation only). Pearson, read pages 157-159, Ex. (write equations only) 1-19 odd nages 158-159; 5-15 odd pages 176-177.

* Appendix II Wollensak C-3801 Open Phrase, Open Sentence

C-3803 Oper: Sentence: Solution
C-3809 Reading Written Problems

Games
Equations by Laymari Allen

* required

1. What ts the cost of n pencils at 3 cents each?
2. What is the cost of \underline{x} articless at y dollars each?
3. How far can a boy run in h hours at the rate of 6 mlles per hour?
4. The sum of two numbers is 7 and one of them is \underline{x}; what is the other number?
5. Represent in terms of \underline{x} two numbers that have the ratio 3:4.
6. If x represents the sum of two numbers and one of them is 5, what is the other?
7. What is the total weight of n boys weighing y pounds each?
8. The sum of two numbers is \underline{x} and one of the numbers is 5 . What is the other numbirr?
9. How many cents are there in d dollars?
10. Mary is n years old now. How old was she 3 years ago?
11. How manj inches are there in \underline{x} feet and five inches?
12. A man had \underline{x} dollars and spent y dollars. How much did he have left?
13. If n represents a cortain number, represent the next larger consecutive number.
14. A parcel weighs \underline{t} pounds and a smaller parcel weighs $\frac{2}{3}$ as much. What is the woitht of the smatler parcel?
15. What is the average weight of two boys who weigh \underline{x} pounds and y purnds each resprectively?
16. How much salt remalns when \underline{x} pounds have been used from a bag containing a pounds?
17. What is the perimeter of a square one side of which ts $\underline{\text { g }}$?
18. The difference between two numbers is 2 and the smaller number is n . What is the cther namber?
19. One part of t is w. What is the other part?
20. Elizate.th's age is now 7 years. Hew old will she be in n years
21. $x=5 y$, Upon what ences the value of \underline{x} depend?
22. What is the perimter of a trlamel whose sides are $\mathfrak{a}, \underline{b}$, and \underline{c} ?
23. What i: the perimeter of a rectangle whe length is 1 and whose width is w?
24. What tis the area of a rectinfle whose bree $18, \underline{b}$ and whose height is h ?
25n How matiy finchess are there in x yarus, \mathbb{I} feet and 1 inches?

Write the mathretatical sentence wibich would be used to solve each word problem.

1. Five times a certain numbor is 105.
2. The Ereater of two numbers is twief the smaller and their sum is 48.
3. Mary is 5 times as old as her brothr and their combined ages total 18 years.
4. One mumber ls 4 imes anothor and their difference is 24.
5. ia man walks 6 homers at a ce:ptali: rite and then proceeds 3 hours at twice hi: firmer rate. If he walked 24 miles In all, at what rate dis! lit start ixalkiar?
G. The lemrth of a rectanely is treete times its width and its Frimeter 1: 5\%, fect.
6. The sum of throe numbers is 56 . The second number is 3 thmes the first and the thind number is 4 times the first. What are the numbers'?
B. The sum of the three angles of any triangle is 180 degrees. In a cortain trlangle ABC, angle A lis twice as large as angly O ar:d angle B is threc times as large as angle A.
7. Two numbers have the ratio $5: 6$ and their sum is 88. Find the numbers.
8. Separate 9? Into two parts such that one part is three times the other.
9. One n:imber is there times another. Six times the larger dimirishod by twice the smaller is $l+8$.
10. When a quart of cream cost forr times as much as a quart of milk, 5 quarts of milk and 3 quart:s of crinam cost $\$ 2.72$, what is the cost cf each pur quait?

C. Applications

1. If you rilx a suallis of rist and da gram. at \%able, what percent of the total solution is salt:
2. Compound X is composed cf fitement; \because ir.1 \therefore in the ritio of $3: 2$. If you had 50 grams of element \because, ho \because m: $\because \because$?arr: of hemerit Z

Behavioral Objectives
I. :frit- t!.. simplest ansirmer fne rach of the following:
—1. $56 \div 2 \div 3 \div \frac{1}{\alpha^{2}}$
-2. $\left(\frac{3}{4}-\frac{1}{3}\right)(3+9)+3[(5-3) \div 6]$
——3. $15-3 \times 2+(12-5) \cdot 5$
4. $3 \cdot 4+2+5 \cdot 3-3 \cdot 7$
_ 5. 5•0+4-2•2
6. $[5 \cdot(a)+11] \div 7$
——7. $4 \times\{78-[5 \cdot 4+115 \div 31\} \times 3\} \cdot 2$

- 8. $24 \div 2-2 \times 6 \div:+3$

-1

10. $7 \times 8-6$
II. For eact: given seaternce, witte the name of the property

11. $(46+21)+\%-i, 6+(21+7)$
12. $16 \cdot i j+7) \therefore(!+\% \cdot 16$
13. $4 \cdot(\pi+13)=4 \cdot(13+7)$
_14. $15 \cdot(6 \cdot 2)=(15 \cdot(1) \cdot 2$
14. If $a+\therefore=c$ then $c=a+b$
-16. $4 \cdot[x+(2+5)]=4 \cdot x+4 \cdot(2+5)$
15. $a x+3 y=3 \cdot(x+y)$
III. Each. of the following statements is elther true or false.
——_ The set $\left\{0, \frac{1}{2}, 1\right\}$ i.s closed under multiplication.
16. The snt of odd natimal numbers is closed under the operitio: of multiplylia; \because the factor a.
——2』. The set of even maturai :umbere i; closed under acditior.

 a! : itelo: .

4

— 2l. $\mathbf{-}$ • (!, -. !.) $\quad \because$
-25. 5• $(x-x)-0$
-26. $x+0$. x

- 27. $7+0=7$
—28. 6. 1 : i
V. For eurh statumont, writt: - correct related problem using the intere.e operatict.

29. 11 - 4 : :
30. $\frac{1}{10}+\frac{1}{2} \cdot \frac{3}{5}$
31. $51 \div 3$:7
32. $\frac{1}{2} \times \frac{\ddot{2}}{2} \times$

7 VI. For eac:t phrise writu A minort mathematical phrase.
33. Tho s:r. ©f feur themes n alla! $\%$
34. 15 m doenomised byenchif x.
35. Four \because avited by the sum ' and x.
36. Thas ghoti-nth ef beven x whd fittern.
37. Fhro t: \because : tl. diff reace of 2 an! q.
33. The f: :4at of 3 and x lincronsed by t.
39. Erver. lass than four p.
40. Four tirres the sum of n and ?

8

41. Enc: difirenoc of threc timins a rumton (w) and ix is the

 The ristrert of swien and the sum of a number (x) and P!eht plus five is t:Or nty...th:ere.
43. C:M-ita! of a seralia ran's lifetim? (\because) spent in childtiood,

VIII. For each given sentence, write the: name ot the property iflustrated.
\qquad 44. $2 \cdot 12=1$
$47 .(-7)+7=0$

45. $6+(-6)=0$
$\ldots \ldots$.............. $8 \cdot \frac{1}{8}=1$

1. Dolciani, Modern Algubra, Pabie 91) mos. 21-31. (Work at least six problema)
2. Dolciant, Modern Algebra, pal;e ! illis. 1\%-21. (Work at least 4 problems)
3. Dolcian1, Modern School Mathematicy, page 52 nos. 17-20. (Work all problema) .
4. Research the contept of tield - Select a system uf numbers and determine If the system is a ileld. Wilte a roport on your findings, giving reasons for your conclusiont..
5. Prepare a bulletin board showfny: , il the properties and their refationships to the followin! set: of Mir! ., i;: natirils, wholes, integers, and rationalis.
Reforentera,
6. Vanatta, Glen D, and Gowiolin. A. Wilsuln, Atyebra One: A Modern Cour:se, Chatles F. Whill luh, ishing (io. 1966.
7. Dolciant, Mary D., Berman, Samon L.., and lrelifeh, Julfus, Modern Algebra, Book 1, Houglition Mifflin Co., 1965.
8. Nichols, :unf.ne 1)., Modern Elementary Altebra, Holt, Rinehart
and Winston, In: , wh!
9. Pearson, Hult, k., amd ivlun, Frank B., Modern Ajgebra A Loplcal Approdch, Glin and Company, 1964.
10. Payne, Jotiph H., Eamboni, Floyd F., Lankford, Jr., Francis G. Alepera Ores, Harcolut, Hrace and hirld, Inc., 1969.
11. Dolclan, Mary $E:$ Jurgensen, kiavon, Willain, Feckonback, Edwin F., Jommilly, Alfred J., Modern School Mather Afrebra 1. Ilcu;hton, Miffin : Company, 1967 . Modern School Mathematica
12. Wollensak Teaching Tapes
13. Equations by l..eyman Allen

RATIONALE

You have studied many sets of numbers through your mathematical career. The first set you discussed was the set of "NATURAL NUMBERS" (1, 2, 3, . . .). You then added zero and the set became the "HHOLE NUMBERS", after which you extended the set to include additive inverses and the set became the "INTEGERS". When you finally added the multiplicative inverses and arrived at the "RATIONAL" numbers, it appeared as though you were finished!

In this LAP you will extend the set of "RATIONAL" numbers. We will call the numbers that we ADD, the "IRRATIONAL" numbers. The set then becomes the "REAL" number system. Once you have at your disposal knowledge of the complete set of REAL numbers you will be equipped to investigate the basic concepts of elementary Algebral

Behavioral Objective
feer having completed your prescribed cotirse of study, you will be able to:

1. Write or identify the definition of the sets of natural numbers, whole numbers, integers, rational numbers, irrational numbers, and real numbers.
2. Given any number, determine if it is a member of the set of
a. natural numbers
b. whole numbers
c. Integers
d. rational numbers
e. irrational numbers
f. real numbers
3. Given any statement involving relationships among the seta of natural, while, integer, rational, irrational, and real numbers, detcrinile $i f$ it is tin \mathfrak{r} false.
4. Determine if each of the sets of natural, whole, integer, and rational mimers is a field. If a set is not a field, state the properties that do not apply, or answer questions, or by completing a chart like the one in Appendix \mathcal{I}.
5. Given a pair of integers a and b, determine whether $a<b$, $a b$. or $a>b$.
6. Given two or more rational numbers, compute their sum, difference, quotient, and/or product.

RESOUR:i,S
NOTE: ROL means every other letter.
Obj. 1
Vanatta, read pages 22, 80-82, Ex. 1-5 page 83.
Wooten, read pages $22,316,425$, Ex. write the definitions of the terms in Obj. one.
Wollensak Tape C-3458: The Real Number System
Obj. 2
Payne, read pages 52-54, Ex. 1-12 page 54; 1-15, 32-41 page 55.
Vanatta, read pages 79-83, Ex. 14 page 84.
Wollensak Tape C-3458: The Real Number System
Obj. 3
Vanatta, read pages 79-83, Ex. 13 page 83. Payne, read pages 52-54, Ex. 13-20 page 54; 16-30 page 55. Wollensak Tape C-3458: The Real Number System

RESOURCES（cont＇）

0ち」． 4
＊Appendix 1
Vanatta，read pages $28-39,85, \mathrm{Ex} .2,3,5$ page 86.
Nichola，read pages 104－105，Ex．1－4 pages 105－106．
Wollensak Tapes C－3458：The Real Number System
C－3453：The Commatative Property
C－3454：The Associative Property
C－3456：The Closure Property
C－3457：The Inverse Elements
C－3459：The Identity Element

Ob1． 5
N：九：ois，read pages 55－59，Ex．1－5 EOL pages 59－61；1－2 EOL page 62 Wh：it：l！，read pages 58，Ex．1－49 odd pages 9－10． P：yne，read pages 56－57，Ex．1－61 odd pages 57－58． Fsarson，read pages 37－38，Ex．1－6 EOL pages 38－39．

Obj．ú
Valatta，read pages 90－106，Bx．1－13 pages 92－93；1－24 pages 95： 1－16 page 99；1－20 odd（bottom）pages 100－101；1－26 page 104； 1－18 page 106；21－25 page 107.
Doliciani，read pages $125-126,128-130,133-135,138-140$, Ex．1－16 page 126；1－12 page 130；1－11 page 135；1－12 page 140；1－8 page 141.

Nichols，read pages 62－63，85－88，92－94，96－98，Ex．1－2 EOL pages 64－65； 6 a－n page 68； 3 a－z page 89； 1 a－y page 95； 2 all page 49.

Payne，read pages 66－69，73－74，75－77，79－80，82－83；Ex．1－51 even page $69 ; 1-34$ page $74 ; 1-30$ page $77-78 ; 10-24$ page $81 ; 1-12$ page 83.
\dot{n}_{1} ithmetic of Directed Numbers，A programmed unit．
Woliensak Tapes C－3331 Directed Numbers：Addition
C－3332 Directed Numbers：Subtraction
C－3333 Directed Numbers：Multiplication
C－3334 Directed Numbers：Division
Ellnstrips：
Comparing Fractions：Adding and Subtraction
Multiplying Fractions Multiplication of Signed Numbers Dividing Fractions
Game：The Conversion Game

1 I. Write the definition or set for each of the following:

1. natural numbers
2. whole numbers
3. Integers
4. rational numbers
5. irrational numbers
f.. real numbers
6. II. Identify the following numt:ers as elements of naturals (N), wholes (W), integers (I), rationals (2) , irrationals (2), or Reals (R). List all the sets that contain each number.
-7. 28
\qquad 9. $\sqrt{9}$
\qquad 9. $\frac{3}{4}$
\qquad 10. $\sqrt{7}$
\qquad 11. $1 . \overline{3}$
\qquad 12. . $010010001 . .$.
7. 0
\qquad 14. -18
-15. $-\frac{7}{8}$
III. True or False.
8. The natural numbers are a subset of the whole numbers.
9. The integers are a subset of the natural numbers.
10. The whole numbers are a subset of the rationals.
11. The rational numbers contain the integers and the fractions.
12. The integers are not a subset of the rational numbers.

Self-Evaluation (cont')

3 IV. True or False.
$N=$ set of natural numbers
$W=$ set of whole numbers
$I=$ set of integers
$Q=$ set of rational numbers
$Z=$ set of irrational numbers
$R=$ set of real numbers
22. QCR
_ 23. $Q \cup Z=R$
24. WCN
25. z. 2 R 2
...-......
26. NCR

4 V. Is aarin of the following sets a field? If no, write the properties necessary to make it a field.
_ 27. whole numbers
____ 28. Integers
\qquad 29. natural numbers
\qquad 30. rational numbers

5 VI. In each blank write $<,>$, or $=$ to make a true statement.
31. 7 _ 2
32. $-10 \ldots 5$
36. -2 \qquad 2
37. 3 • 5 \qquad -15
33. 0 \qquad 18
34. $8+1$ \qquad 9
35. $0 \quad-17$
6. VII. Work the following:

$$
\begin{aligned}
& \text { 41. }-\frac{2}{3}+-\frac{4}{5}= \\
& 42 \cdot-\frac{2}{3} \cdot \frac{4}{5} \\
& 43 \cdot-\frac{4}{5}+\frac{-2}{3} \\
& 44 \cdot-\frac{6}{5}+\frac{3}{4}
\end{aligned}
$$

38. -5
\qquad 3
39. -7 -9
40. 10 \qquad -10

4 VII. Trise or False.
61. The set of natural numbers form a field with operations addition and multiplication.
62. Every element in a field has a multiplicative inverse.
\qquad 63. In a field addition and multiplication are associative.
\qquad 64. The integers do not have multiplicative inverses.
\qquad 65. The natural numbers have all the properties except additive inverses.
\qquad 66. The irrational numbers do not have an additive identity.
\qquad 67. The rational numbers form a field.
\qquad 68. Every integer has an additive inverse.
\qquad 69. Addition is associative.
\qquad 70. Subtraction is commutative.

IF YOU HAVE SATISFACTORILY COMPLETED YOUR WORK, YOU MAY TAKE YOUR PROGRESS TEST. CONSULT YOUR TEACHER FIRST.

Sahavioral Objectives

After having completed your prescribed course of stridy, yo: 11 : be able to:
7. Write the simplest name for any given phrasc invo:wishination of addition, subtraction, multiplication, and'n litu;ion.
8. Given an open sentence with at least one unknown and :anowint set which is a subset of the reals, determine the soi ci all replacements for the unknown(s) that will make that sentor:.. true. (That is the solution set for the sentences.) int w:ll determine the solution set by observation only.
9. Given any rational number of the form $\frac{a}{b}$, expruss it: :,: form and state whether it is a terminabirg wi reseacion orimil.
10. Given any rational number expressed in derimal form, wry!. .t In the form $\frac{\text { a }}{\mathrm{b}}$ where a is a whole number and b i:! a natu: number.
11. Given any pair of rational numbers, name the number :itis. betwee: them.
12. Given any word phrase like the ones in Appendix $1, t$.... 1 ! it ints an equivalent mathematical phrase.

RESOURCES

Obj. 7
Vanatta, Ex. 9-25 page 107.
Nichols, read pages 31-32, 101-102, Ex. 1 page 103.
Wooten, Ex. 1-20 page 99; 23-30 page 115.
Payne, Ex. 45-48 and 55-66 page 84.
Pearson, Ex. 7, 12, 15 page 265; 9 page 267.
Obj. 8
Nichols, Ex. 5-7 page 90; 2 page 95; 5 page 101, 2 FOf. $\mathrm{F}::$: ! 1. Wooten, Ex. 9-12 page 109. Payne, Ex. 1-12 page 72; 36-44 and 49-54 page 84. Pearson, Ex. 12, 13 page 226; 7 page 230.

Obj. 9
Dolciani, read pages $400-402$, Ex. 1-12 even page 403.
Nichols, read pages $30-31,65-77$, Ex. 1 a, $c, c, f, h, i, \ldots \ldots$.
1-4, 5-6 EOL pages 67-68.
Wooten, read pages $422-423$, Ex. 1-8 page 426.
Pearson, read pages 268-269, Ex. 58-63 page 30.

Obt. 10
Dolciani, read pp. 400-402, Ex. 13-20 p. 403. Nichols, read page 68-70, Ex. 1-3 EOL page 70. Wooten, read page 424-425, Ex. 9-19 odd p. 426. Payne, read p. 30, Ex. 64-69 page 30.

Obj. 11
Dolciani, read p. 398, Ex. 15-20 p. 400. Nichels, read p. 71, Ex. 1 p. 71. Wooten, read p. 2, Ex. 21-22 p. 3, 19-22 p. 115. Pearson, read pp. 35-36, Ex. 1-4 p. 36.

Obj. 12
Nichols, read p. 79, 107, Ex. 1-19 pp. 79-80; 1-22 p. 108. Wocten, read p. 10, Ex. 11-23 odd p. 13; 31-38 p. 33. Fayne, read p. 128, Ex. 1-35 odd pp. 128-130. Pearson, read p. 145, Ex. 10, 12-14 p. 147; 6-11 p. 226. Wollensak Tape C-3801: Open Phrase, Open Sentence

* Apvendix II
* Req̨uired

7 I. Express the following fractions as decimals and state if they are repeating or terminating.

1. $\frac{4}{9}$
2. $\frac{3}{8}$
3. $\frac{2}{11}$
4. $\frac{2}{7}$

8 II. Express the following decimals as fractions.
5. . 12
6. . $\overline{274}$
7. $.5 \overline{3}$
8. . 684
9. $\overline{73}$
10. . 82

9 III. Find the rational number midway between the following:
11. $9 \frac{1}{2}$ and $11 \frac{1}{3}$
12. 2.19 and 1.11
13. -3.12 and 3.76
14. $\frac{1}{6}$ and $\frac{3}{24}$
15. $\frac{3}{4}$ and $\frac{15}{16}$

10 IV. Write the mathematical phrase of each word phrase.
\qquad 16. sum of 17 and x
\qquad 17. 3 more than x
18. the square of the sum of 3 and x is
19. three times the square of x
_ 20. the quotient of x divided 1 ly 2 y
\qquad 21. \qquad is the next consecutive odd integer after x
22. t is an integer, give the next three consecutive integers
23. number of feet in $7 t$ yards
\qquad 24. number of quarts in $(a+3 t)$ gallons
\qquad 25. worth in cents of y eight-cent stamps
26. the reciprocal of 2 m
\qquad 27. the sum of the reciprocals of x and y
\qquad 28. If Dave 182 n years older than Suzie and Suzie is $3 x+1$ years old, how old is Dave?
29. The reciprocal of the sum of x and y
30. 12 increased by $n-4$
31. If Ed was $x+1$ years old 3 years ago, how old ia he now?

7 V. Perform the indicated operation (remember the order of operation from a previous LAP.)

8 VI. In the following write the number(s) that make each statement true.
37. $3 \cdot 7+-4=x$
38. $\quad P-6=-12$
39. $\frac{1+x}{2}=-2$
40. $3 x+2=-13$
41.
$4 \times-4=-24$

APPENDIX I (ot. 4)

Rut an x by each property that holds for the given setri it an day Put a elrale (0) by each property that does not hold. No ins: iso: : a lilian.

APYMETX II (Ohs. 12)

IN THIS SECTION you will learn to translate from a word phrase to a mathematical expression. This will help you when you later solve word problems. You are to till EACH blank below with a mathematical expression, YOTI ARE NOT TO DO ANY COMPUTING. (The first two problems have been complated for you as e examples.)

1. The sum of 3 and the product of 2 and 6 is $3+2(6)$ (Yowl should not write 15 or $3+12$, since that requires computing)
2. Three more than the square of \underline{x} la
$x^{2}+3$
3. The sum of 5 and 9 is
4. The sum of $\frac{2}{3}$ and -6 le
5. The sum of 17 and x la

6. 5 more than 7 le
7. 18 Incroseed by 12 ta
8. x more than 10 le
9. 3 more than E is
10. The sum of $2 x$ and $5+3 x$ is
11. 51 increased by 5 - \underline{x} is
12. The square of the sum of 3 and 4 ta
13. The sum of the squares of 3 and 4 is
14. The square of the sum of $2 x$ and $3 y$ is
15. The sum of the squares of 5 and m ic
16. Than times bine sequent of x in
17. The square ret the product: of 3 and x to
18. The quotient of 27 divider by 618
19. The quotient of x divides x ? 3 is
20. The square of the opposite of 5 is
21. The opposite of the square of 5 is
22. The square of the opposite of x is
23. The opposite of the square of x is
24. Monday and \qquad are consecutive days of the week.
25. I'uesday, and Thursday are consecutive days of the week.
26. $1,23,-62$, and -14 are integers. $-15,-16,-17, \ldots$ and -19 are consecutive integers.
27. If x is an integer, then $x, x+1$, and are consecutive integers.
28. If y is an integer, then $y-2, y-1, y, y+1$, \qquad and $z+3$ are consecutive integers.
29. If 1 is an Integer, then $3 \underline{1}$ is an integer. Also, $3 t, 3 t+1, \ldots$, and $3 t+4$ are consecutive integers.
30. $-3,0,5,7$, and 212 are Integers. $-8,0,2,16,-40$, and 18 are even integers. If k is an oven integer, then $k+8$ ls an \qquad integer. 18, 20, and 24 are consecutive even integers. If x is an even integer. x and are consecutive even integers. If t is an even Integer, then $\underline{l}-2, \underline{\ell}, \underline{t}+2$, , and $\underline{t}+6$ are consecutive even integers.
31. 7 is an odd integer. 3,5,7, \qquad , and 11 are consecutive odd integers.
32. If m is an odd integer, then m and \qquad are consecutive odd integers.
33. If r is an odd integer, then $r, r+2$, \qquad , and $\underline{r}+6$ are consecutive odd integers.
34. The average of 6 and 4 is:

The average of $5,82,16,93$, and 74 is: \qquad

The averodre of a, b, c, are ct is:
35. 5 10ne tivan 7 in \qquad -
36. 7 2ene than 5 10 \qquad -
37. 3 2000 than $x 10$ \qquad
38. x Iean : 3 10 \qquad
39. 10 dearmated by 2 ta \qquad -
40. 15 dexpenoed by 515 \qquad -
41. 7 decrmanded by I is \qquad
42. 3t deureated by 5n 10 \qquad
43. Tr Iean than 10t in \qquad
44. 4 2eas then $t+5010$ \qquad
45. The aisolute vilue of the arm of 35 and 2 y 10 \qquad

47. 5 timee the arn of 6 and 2 in \qquad -
48. The product of 8 mal the man of 2 and t is \qquad
 \qquad -
 \qquad -
51. The quotiat of the orn of 3 ma p dividel by the groduot 023 and p is \qquad -
52. The seorprocel of 7 10 \qquad -
53. The seolprocel of a 1a \qquad -
54. The an of the realprocain of 7 and m to \qquad -
55. The rwoiprooal of the are of 7 and 1 It \qquad -
56. 7 atakela are worth \qquad ocntm.
57. 42 nicirele wro worth \qquad cents.
58. x plakela are worth \qquad centa.
59. 0 + 2 adakejo are vurth \qquad cents.
60. 32 nickels are worth \qquad cents.

1. Draw a chart showing in Venn ind. arm form the set of real numbers and all it: ? ? bat.
2. Prove $-(a-b)=-a+b$ Hint: (a .. :) is the additive inverse of $-(a-b)$.
3. Work all of the following:
a. $\left(-\frac{2}{5}+\frac{3}{4}\right) \cdot \frac{1}{5}$
b. $\left(\frac{3}{4}+\frac{1}{2}\right)+-\frac{2}{3}$
c. $\left[\left(\frac{-3}{4}+\frac{2}{3}\right)+\frac{1}{7}\right] \cdot \frac{2}{5} \quad$ d. $\left(\frac{3}{2}+\frac{2}{5} \div 4\right)+\frac{3}{2}$
e. $\left(\frac{-2}{3}-\frac{-3}{4}\right)+\left(\frac{-2}{3}-\frac{6}{5}\right)$
4. Prove the integers of the form $3 a+1$ are not closed under addition.
5. Show examples to illustrate the following.
a. two irrational numbers whose difference is irrational
b. two irrational numbers whose product is irrational.
c. two irrational numbers whose quotient is irrational
d. two irrational numbers whose quotient is rational
e. two irrational numbers whose product is rational
6. Prove the set of irrational numbers is not a field.
7. Determine if the set of irrational numbers is a field by listing the field properties, giving an example of each using irrational numbers, and explaining whether or not each property applies.
8. Complete our number system by studying the complex numbers, Read pages 474-476 in Vanatta and work exercises 1-24 on pages 476-477.

Vanatta, Glen D. Algebra One, Charles F. Merrill Publishing Co., 1966.

Dolciani, Mary P. Berman, Simon L., and Frefilich, Julius, Modern Algebra, Book One, Houghton Miffiln Co., 1965.

Nichols, Eugene D., Modern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965.

Payne, Joseph N., Zamboni, Flovd F., J.ank£ord Jr., Francis a., Harcourt, wrace and World, inc., 1969.

Dolciani, Mary P., Wootou, William, Beckenback, Edwin F., Jurgensen, Ray C.. Donnilly, Alfred J., lioughton Mifflin Co., 1967.

Pearson, Lelen R., Allen, Frank B., Madern Algebra, A Logical Approach, Ginn and Company, 1964.

Michols, Eugene D., Arithmetic of Directed Numbers, Holt, Rinehart and Winston, 1962.

Wollensak Teaching Tape - C-3458 The Real Number System $\left.\begin{array}{rl}\text { C-3453 The Commutative Property } \\ \text { C-3454 The As } 30 c i a t i v e ~ P r o p e r t y ~\end{array}\right]$ C-3456 The Closure Property

RATIONALE

One of the most important concepts in the study of Algebra is that of a variable. In this LAP you will study terms and expressions, most of which contain one or more variables. Using many of the previously introduced properties and definitions, you will learn to apply new theorems, listed on the next page, which are concerned with equivalent expressions.

You will develop the ability to judge whether two given expressions are equivalent. This skill is necessary in solving equations. While you are developing this skill, you will begin to learn how to prove theorems.

For every number x, y, and z, the foljoring apply:

Diatributive property of multiplication over additirn

$$
\begin{aligned}
& x(y+z)=x y+x z \\
& x y+x z=x(y+z) \\
& (y+z) x=y x+z x
\end{aligned}
$$

Distributive projerty multiplication over aubtractio:

$$
\begin{aligned}
& x(y-z)=x y-x z \\
& (y-z) x=y x-z x \\
& x y-x z=x(y-z)
\end{aligned}
$$

Kultiplication by $-1 \quad x(-1)=-x$

Division by $-1 \quad \frac{x}{-1}=-x$

Opposite of $x-y \quad-(x-y)=y-x$

Opposite of $x+y \quad-(x+y)=-x+-y$
$(-x) y=-(x y)$

Some additional theorems to be covered in this LAP

$$
\begin{aligned}
& -(-x)=x \\
& -(-x) y=x y \\
& (-x)(-y)=x y
\end{aligned}
$$

$\psi_{x} x^{y} \neq 0^{*} z \frac{x}{y}=\left(\frac{x}{y}\right)(2)$

. x^{8} yfo $\quad \frac{-x}{y}=-\frac{x}{y}$

*xyno $\quad \frac{-x}{-y}=\frac{x}{7}$

$3_{x} y_{\text {yfo }}-\left(-\frac{x}{7}\right)=\frac{x}{7}$
$x_{x} y^{3} y^{3} \times 10^{8} 00 \quad \frac{x(-7)}{F(-0)}=\frac{\pi y}{x 8}$

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:

1. Given any polynomial, classify it as
a. monomial
b. binomial
c. trinomial
2. Given any open expression and replacements for the variables, compute the value of the expression.
3. Given a pair of expressions, determine whether or not they are equivalent.
4. Using the appropriate properties, definitions, and theoren, write equivalent expressions for any given expression.
5. Given a pair of rational expressions, write a eingle equivelent expression that names their product.
6. Given a rational expreseion, use the multiplicative identity thsorem to urite a singl.e equivalent expression where the numerator and denominator have no common factors.
7. Given a pair of rational expressions, write a single equivalent e:prassion that names theiz sum.

resources

nibj. 1, 2
Yanatta, 1 read p. 67-71, Ex. 4 p. 71: 2 read p. 72, Ex. 1-27 p. 73.

Dolciani, Modern Algebra, Bk. 1, \#1 _ \#2 read Pp. 36-37, Ex.
1-9 written P. 37, 37-46 p. 43.
Nichols, 1 and 2, read Pp. 119-122, Ex. 1, 2 pp. 121-124.
Wooton, 11 and 2, read pp. 52-54, Ex. 1-19 oral p. 54.
Payne, \|l and 2, read pp. 307-309, Ex. 1-10, and 18-27, pp 309310.

Pearson, 11 and 2, read pp. 240-241, Ex. 1,2 p. 241, and 3 p. 243.

Obj. 3
Nichols, read pp. 124-132, Ex. 6, 7 pp. 127-128; 1-12 pp. 130-131; 4 p. 132.
Payne, read Pp. 86-87, Ex. 1-19 pp. 87-88.

Vanatta, read pp. 67-71, Ex. 5 p. 71, nos. 1-20 even p. 125, no. 3 p. 75.

Dolciani, pp. \qquad Ex. 1-30 even p. 70.

Nichols, read pp. 133-137, Ex. 2-6 pp. 135-136.
Wooton, read pp. 55-57, Ex. 7-24 p. 58, 1-28 p. 59.
Payne, read pp. 88-9u, Ex. 1-20 p. 90, 39-43 p. 92.
Pearson, read pp. 242-243, Ex. 1-27 p. 242, nos. 1, 2. p. 243

Obj. 5
Vanatta, read pages $320-321$, Ex. $1-5,7-10$ page 322.
Dolciani, MA, read pages 292, Ex. 1-20 even (oral) page 293.
Nichuls, read $\mu \mathrm{H}$ 2es $146-15 \%$, Ex. 1,2 p. 148, 3a, $\mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, 1$ page 148; 3a.c,e, z,i, 4 !с弓е 150

Payne, remif; . 386 -394, Ex. 1-9, 11-31 odd, pages 387-388; 1-11,15,

Wooton, : !S! , read pp. 320-323, 328-330, Ex. 1-10(written) pp. 323-324; 1-10 p. : $: ~: ~ 1-7,9,1 t \mathrm{p} .331$.

Pearson, read pp. 39:-400, 401-402; Ex. 1,2,4abdfhkmq page 398; ladfhlije: page 400; 1-4, 7, 8, 10, 12, 16, 20-22 pages 402.-403.

Obj. 6
Nichols, read page 151, Ex. lacdeg, 2 page 152.
Payne, read Pp. 405-408, Ex. 1-3, 5-21 odd, 22, 25 page 408.
Obj. 7
Vanatta, read pp. 236-330, 331-332, 333-335, Ex, 1,2,3,6,8 page 328; $1,4,5,7,9,10,11,12,16$ page $330 ; 1,3,4,6,8,9,10,11,13,15$ page 333; $1,3,5,6,8,9,10,12,14,15,23,24$ page 335 .

Dolciani, MA, read pp. 298-300, Ex. 1-14 even pages 298-299; 1-16 even, 20 p. 301.

Nichols, read pp. 152-153, Ex. La, c,e,g,i,j,1 page 153.
Woot on, MSM, read pp. 332-336, Fx. 7, 12 page 334; 1,3,5,7,10,11,13,15 pages 337-338.

Payne, read pp. 398-403, Ex. $1,4,5,7,12,13,15,16,18,20,23,27,28,32,35$, 36,39,48,50,54,60,62,64,66 pages 403-405.

Pearson, read pp. 403-405, Ex. 2,4,7,8,12 page 405.

SELP-EVALUATIOM

O8S. 1

1. 2^{5}

- 2. $x^{4}+6 x^{2}$
_ 3. $5-4 x+2 y$
- 4. $456 x^{4} y^{5}$

5. $4 x^{3} y^{2} x^{5}+6$

OBJ. 2
Dotaratine the vilue of each axpreandon if the roplacement for x in 5 and tho roplacement for y $10-3$.

- 6. $5 x^{2}$
— 7. $\mathrm{x}+\mathrm{y}$
—— $4 x^{2}+3 y$
- 9. $\frac{x^{2}+x}{x}$

L_ 10. $\frac{x^{3}-y^{3}}{y}$
OBJ. 3
Given the following pais of axprenalom, are thoy oquivalemet Write Yes or No.
\qquad 11. $z(-y)$ and $(-x) y$
\qquad 12. 4- x and $\Sigma-4$
___ 13. - ($a-b$) and b-a
—_ 14. $-(a+b)$ and $b+a$
15. $(a+b)^{3}$ and $a^{3}+b^{3}$

Obs. 1

.

28. $\frac{1}{3} \cdot$;
$\because-4 ; \frac{5}{3}$
30. $\quad \stackrel{2}{3}$
31. $\frac{6}{y^{2}} \cdot \frac{y}{2}$
32. $\frac{8}{a-b}$.
33. $\frac{5 a: 2}{2 i c^{2}} \cdot \frac{36 n^{2}}{6 n^{2}} \cdot \frac{7 e^{2}}{30^{2}}$

Obj. 6
Stmplify.
35. $\frac{2-a}{3} \cdot \frac{n}{3-a}$
36. $\frac{7}{6} \cdot \frac{-6}{6}$
37. $\frac{1}{x i j} \cdot \underset{2}{x}(y-1)$.
38. $\frac{2 a}{a} \cdot \frac{b}{4}$
39. $\frac{4+a}{5} \cdot \frac{5}{4-a}$
40. $\frac{3 x y}{7} \cdot \frac{7}{2 y}$

Obj. 7
Compute the Eollowing:
41. $\frac{2}{3}+\frac{1}{7}$
42. $\frac{a}{b} \cdot \frac{x}{y}$

44. $\frac{a}{7}+\frac{a}{3}$
45. $\frac{2 x}{5 y}+\frac{x}{2 y}$
46. $\frac{3}{x}+\frac{4}{y}$

Answer true or false to the following:
ObJ.
47. $\frac{3}{5} \cdot \frac{4}{5}=\frac{12}{5}$
48. $\left(-\frac{3}{4}\right)(-2)=\frac{(-3)(-2)}{4}$
49. $\frac{3}{x} \cdot \frac{2}{y}=\frac{3 y}{2 x}$
50. $(-x) \cdot y \cdot\left(-\frac{1}{y}\right)=x$
51. $\frac{x-3}{x-2}=\frac{3}{2}$

LL
52. $-\frac{2}{3} \cdot \frac{-3}{5}=\frac{2}{5}$
53. $\frac{3 m}{7+m}=\frac{3}{7}$
54. $\frac{4 y}{5 y}=\frac{4}{3}$
55. $\frac{(-7) \times 2}{3 \times(-7)}=\frac{2}{5}$
\qquad 56. $\frac{3-x}{4-x}=\frac{3}{4}$
57. $\frac{2}{4}+\frac{5}{3}=\frac{7}{7}=1$
58. $\frac{3}{2 x}+\frac{4}{3 x}=\frac{17}{6 x}$
59. $\frac{2}{x}+\frac{1}{y}=\frac{3}{x y}$
—60. $\frac{x}{3}+\frac{k}{4}=\frac{4 x+3 k}{12}$
\qquad 61. $\frac{-2}{3}+\frac{4}{7}=\frac{2}{21}$
62. $\frac{-3 k}{2}+\frac{-k}{4}=\frac{-7 k}{4}$

If you have satisfactorily completed your work, take the Progress Test. Consult your teacher first.

At the completion of your prascribed course of atudy, you wald be able to:
8. Given a pair of rational expressiond, wite a single equivalent expreseion that names their dxfferencs.
9. Given a pair of rational expressions, write a aingle cquivalent expression that names their quotient.
10. Given a pair of rational expressions which involvee the additive ' iverse of an erpression, r ㄱ! ! a a elngle expreseli: equivalent to it.
11. Given any complex rational expresaion, use the appropelate properties, theorems, and definitions to write a atuele expran-sion-equivalent to it.
12. Given a word phrase, change it to an equivalent mathemelcal phrase.

RESOURCES
Obj. 8
Vanatta, read pp. 326-335, Ex. 4,5,7,9-12, page 328; 2,3,6,8,13,14,15, 17,18 rage $330 ; 2,5,7,12,14$ page $333 ; 2,4,7,11,13,16,18,20,21,25$ page 335.
Dolciani, MA, read pp. 298-300, Ex. 1-14 odd pagea 298-299; 1-16 ofd. 19, 21,22 , page 301.
Wooton, MSM, read pp. 332-336, Ex. 1-6,9,11 page 334; 4,8,9,12,14, $15, \therefore 7,13$ p::ess 337-338.

Payne, read pp . $2,8.403$, Ex. 8,9,11, 21,22,24,29,30,31,33,38,41,44, 56,60,61,63,65 pages 403-405.

Pearson, read pp. 403-405, Ex. 3,5,6,9-11 page 405.
Obj. 9
Vanatta, read pp. 323-324, Ex. 1-15 pp. 324-325.
Dolciani, MA, read p. 295, Ex. 1-12 p. 295; 1-4 pp. 296-297.
Nichols, read pp. 154-155, Ex. 1 a,b,d,e,g,1,k,1, and $2 a, b, e, f, h$, 1, j, 1,m pages 156-160.

Payne, read pp. 396-397. Ex. 1-22 even page 397.
Pearson, read Pp. 401-402, Ex. 5,9,13,14,15,17,18 pages 402-403.

Obj. 10
Nichols, read pp. 154-155, Ex, 7 a,c,d,f,g,j,1; 8 a,b,e,d, $, h, 1,1$, $m, o, p, q, s, u, v ; 10 a, c, d, g, j, k, o, q$, pages 158-160.

Vanatta, read pp. 341-342, Ex. 1-7, 10, 12, 13 page 343.
Dolciani, MA, read p. 304, ex. 1-8, 11, 12, 15, 16, 23, page 305.
Nichols, read pp. 161-163, Ex. 9 a,b,c,e,f,g,h,i,j,k,1,m,n,n,r,t;
11.a,c,d,e,f,g,n,p,q,r,s,1,1,m; 12 a, c, e, f, pages 159-1 1 ..

Ex. 1 a,c,f,h,j,n,n,p; $2 a, c, d, f, g, h, k, 1, m, o, p, q, s, t, v, y, y, r$, $a^{\prime}, b^{\prime}, c^{\prime}, e^{\prime}, g^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}, 1^{\prime}$, pages $163-104$.

Payne, read pages 409, Ex. 1-11, 19, 21, 23, 25, 27, 29, 35 pages 410-411.

Pearson, read pages $406-407$ (examples 7 and 8), Ex. 46 a,c,e,f,h, j page 407.

Obs. 12

Vanatta, pp. \qquad Ex. 1-6 p. 74, 1 p. 75, 1 p. 77.

Dolctiani, read pp. \qquad , Ex. 1-24 p. 42.

Nictiols, read page 165, Ex. 1 all parts; $2 a, c, d, f, 8, k, n, 0 ;$ 3a, c, f, h, i, $1, m, n, q, r, u, w, x, 2, a^{\prime}, c^{\prime}$ pages 165-167.
'Wollensak Teaching Tapes C-3801: Open Fhrase C-3802: Open Sentence

* Appendix
* Required (turn in to teacher)
I. Fox each of the following exnraceinon, witin itn equival.ant in i atagle expremsion.

8
(1) $\frac{5}{8}-\frac{2}{3}$
(2) $\frac{1}{2}-\frac{2 n-!}{6}$
(3) $\frac{8}{y}-\frac{-2}{2}$
(4) $\frac{5 b}{3 y}-\frac{3 b}{4 y}$
(5) $\frac{2}{x}-5$
(6) $\frac{-3}{7} \cdots \frac{-2}{7}$

9
(7) $x+\frac{2}{3}$
(8) $\frac{a}{b}+\frac{1}{2 b}$
(9) $\frac{-3}{4}+\frac{n}{n}$
(10) $\frac{2}{3}+\frac{5}{6}$
(11) $\frac{-a}{b}+\frac{c}{-d}$
(12) $\frac{3}{2}+\frac{3-5}{2}$

10
(13) $-\frac{-5}{-3}$
(14) $-\frac{-5 x}{3 x}$
(15) $-\frac{4 v}{-5}$

11 (16) $\frac{12}{\frac{6}{x}}$
(17) $\frac{\frac{x}{y}+1}{\frac{x}{y}-1}$
(18) $\frac{\frac{x+y}{x-y}}{\frac{x-y}{x+y}}$
(19) $\frac{\frac{a}{x}+\frac{a}{y}}{\frac{b}{x}-\frac{b}{y}}$
(20) $\frac{2-\frac{1}{x}}{4-\frac{1}{x}}$
(21) $\frac{x}{1+\frac{1}{x}}$
II. True or Palse.

8
22. $\frac{1}{y}-2=\frac{1-2}{y}=\frac{-1}{y}$
\qquad 23. $\frac{a}{2}-\frac{b}{8}=\frac{a-b}{6}$
24. $\frac{-x}{3}-\frac{y}{6}=\frac{-2 x-y}{6}$
25. $\frac{3 a}{2 b}-\frac{5 b}{6 a}=\frac{9 a^{2}-5 b^{2}}{6 a b}$
25. $\frac{a}{2}-\frac{-a}{3}=\frac{5 a}{6}$
27. $-\frac{2}{3}-\frac{4}{2}=\frac{-6}{5}$
28. $\frac{3}{4}-\frac{2}{3}=\frac{17}{12}$

9
29. $\frac{3}{4}+\frac{a}{b}=\frac{3 a}{4 b}$
\qquad 30. $\frac{x}{y}+\frac{a}{b}=\frac{x b}{y a}$
31. $\frac{3}{5}+\frac{x}{y}=\frac{5 x}{3 y}$

10
32. $\frac{(-x) 3}{y(-7)}-\frac{-3 x}{7 y}$
33. $-\frac{1}{5}-\frac{1}{8-5}$
_ $11 . \frac{1}{x+y}=\frac{1}{-x-y}$
— 35. $-\frac{-3 x}{-2 y}=\frac{3 x}{2 y}$.

11 \qquad 35. $\frac{-\frac{1}{2}}{2}=\frac{3}{4}$

27. $\frac{\frac{a-b}{a-\therefore}-\frac{a}{b}-1}{\frac{a-b}{a-b}}=1$
38. $\frac{a+b}{-\frac{2}{6}}=\frac{1}{3}$

39. $\begin{aligned} & \frac{a}{a}+b \\ & \frac{x}{y}-\frac{3}{2} \\ & \frac{x}{y}+\frac{3}{2}\end{aligned}=\frac{2 x-3}{2 x+3 y}$.
40. $\frac{1}{1+\frac{1}{x}}=\frac{x}{x+I}$

12 IIL. Change the following word phrases to equivalent mathematical phrase. 41. The product of seven and the sum of some number and five. 42. The sum of x and twice y.

47. 5ratif matio (hy-1) nichoie.

48, Numbry if atedes in the perimeter of a square witia x fect: for the lum, of the sj.de.

If you have satifafactusily cimpleted your work, youl may take your lap TEST. Consult your teacher fiest.

1. 3 dimes are worth

\qquad cents.
2. x dimes are worth \qquad cents.
3. $7 x$ dimes are worth \qquad cents.
4. $\frac{X}{2}$ dimes are worth \qquad cents.
5. $x-4$ dimes are north \qquad cents.
6. 7 3-cent stamps are worth \qquad cents.
7. $k+4$ 3-cent stamps are worth \qquad cents.
8. St 7-cant stamps are worth \qquad contr.
9. If I have 3 nickels and 4 dimes and 2 quarters, then I have \qquad colas worth \qquad cents.
if. If I bevy 4 nickels and x dines and 3 quertesp, then I have \qquad coins north \qquad cents.
11. If I hare I nickels and $3 x$ dimes and $x+2$ guenera, then I \qquad have coins worth cent: 8 .
12. Al 1012 years old. 5 years agon he ran \qquad yare old and 8 years f: mn now he will be _years nil.. 3 times hila prevent ago in \qquad - Bill is 4 Jeanne younger: thai A1. E1.11 18 \qquad yer so o ln.
13. Ed is x years old. 3 years from now he will be years old and 2 years ago ho meas \qquad years clad. diva in at minos as old as ind is not. Lava is. \qquad yours old. 2 yemen ens be rad \qquad y oars did. Hal in 2 years yotemon than in.

Hal is \qquad years old. In 5 years ho rill. he \qquad years old. Sam 106 years older than nave. Sam 1F...........yeare riga
I. Complete the following proofs by writing the correct reason in the blank space provided.

Proot: - Statements
Reasons
a. $\left(\frac{x}{y}\right)\left(\frac{x}{b}\right)=\left[x\left(\frac{1}{y}\right)\right]\left[\Sigma\left(\frac{1}{D}\right)\right]$
b. $\quad=x\left[\left(\frac{1}{y}\right) r\right]\left(\frac{1}{6}\right)$
c. $=x\left[r\left(\frac{1}{y}\right)\right]\left(\frac{1}{8}\right)$
d.
$=(x \times)\left(\frac{1}{y} \cdot \frac{1}{8}\right)$
H. $\quad=(x+5)\left(\frac{1}{78}\right)$
I.
$=\frac{27}{y 8}$
\qquad

ADVANCRD STUDY (cont: ${ }^{\circ}$

II. Work Problems 1-16 page 325, Vennt.ta.
III. Dolciani, p. 319, Just for Fun.
IV. Dolciani, pp. 328-330, Extra for Experte.
V. Work the following:
(1) $5 x-\frac{3}{5 x-\frac{3}{5 x}}$
(2) $\left[\frac{2 x+1}{x}-\frac{x}{2 x+1}\right] \cdot\left[\frac{5 x-1}{x}+\frac{x}{5 x-1}\right]$
(3) $\left[\frac{4}{x+1}+\frac{3}{x-2}\right] \cdot \frac{x+3}{7 x-5}$
(4) $\frac{2+\frac{5}{a+2 b}}{\frac{3 a}{a+2 b}}$
VI. Prepare a chart using a Venn diagram showing the relationshipa among polynomials, monomials, binomials, and trinomials.
VII. Dolcian1, Moderr, Algebra, Bk. 1, work any ten probleme from 1-15 on pages 43-44.
VIII. Nichols, page 132, number 7.
IX. Nichols, page 141, number 3.

Michols (abbreviation)
Nichols, Eugene, D., Modern Elementary Alpehra, Holt, Rinchart end Wineton, Inc., 1965.

Pearson (abbreviation)

Pearson, Helen R., and Allan, Frank B., Modern Alpebra: A Logical Approach, Ginn and Company, 1964.

Payna (abbreviation)

Payne, Joseph N., Zamboni, Floyd F., Lantford, Jr., Francie: Algebra One, Harccurt, irace end World, Inc., 1969.

Wooton, MSM (abbreviation)
Dolciand, Mary P., Wooton, William, Beckenback, Edwin T_{1}.., jurgeusen, Ray C., Donnelly, Alfred J., Mo:Jern School Hachematic.s Algebra 1.
.
Dolciani, 1A (abbrevilation)
Dolciani, Mary P., Berman, Simon L., Preilich, Julius, Mocic:n Alncbra, Book 1, Houghton Miffiln Co., 1965.

Vanatta (abbreviation)
Vanatta, Glen D., Goodwin, A. Vilson, Algebra One, A Modern Courge, Charles E. Merrill Publishing Inc., 1966.

Wollenaak teaching tape $\mathrm{G}-3801$ - Open Phrase . C-3802 - Open Sentence.

RATIONALE

In daily life you most often express yourself in Eng1ish sentences. Because of the importance of clean and effective communication, a great deal of time in school is apent studying the English language.

In mathematics, ideas are expressed in a combination of English sentences and special mathematical sentences. Mathematical sentences consist of mathematical symbols rather than WORDS. An example of a mathemacical sentence is $3 x+5=9$. An understanding of the types and properties of mathematical sentences is essential to your advancing in mathematics.

SECTION 1

Behavioral Objectives

At the completion of, your prescribed course of study, you will be able to:

1. Given any mathematical sentence, classify it as being true, falfe, or neither.
2. Given any linear equation where the solution is dependent on the addition and/or the subtraction property determine the solution set showing all steps and giving reasons.
3. Given any linear equation where the solution is dependent on the multiplication and/or division property, determine the solution set showing all steps and giving reasons.
4. Given any innear equation whose solution is dependent upon a combined use of addition, subtraction, multiplication, and/or division properties; determine the solution set showing all steps and giving reasons. Appendix I will be completed and turned in to the teacher.

RESOURCES

Obj. 1
Nichols, read Pp. 174-176, Ex. 1-21 odd pages 175-176.
Payne, read pp. 20-22, 101-104, 110-112, 114-116, Ex. 1-12 page 22; 1-10 page 104; 11-20 pages 111-112; 1-18 page 116.

Wooton, read pp. 29-33, Ex. 1-9 page 33.
Pearson, read pp. 57-59, Ex. 3 page 58.

Obj. 2
Vanatta, read pp. 47-52, Ex. 1, 2, 6, 7, 13, 14, 17, 18, 19, page 53.
Dolciani, read Pp. 80-82, Ex. 1-30 odd P. 83.
Nichols, read pp. 188-191, 177, Ex. 1-48 every 4th problem pages 190191; 1-10 page 177.

Payne, read pp. 101-104, 110-112, Ex. 11-20 pages 104-105; 1-10 page 111.
Wooton, read pp. 116-118, Ex. 1-10 page 119.
Pearson, read pages 151-152, Ex. 1 a, f, h page 152; $3 \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$, $m, n, 0, s, t$ page 152.

Transpareacy: Properties of Equality (3M)

Games: Equations

Obj. 3
Vanatta, riad pp. 47-52, Ex. $3,4,5,8-12,15,16$, and 20 page 53.
Dolciani, read pp. 83-84, Ex. 1-20 even pages 84-85.
N1chols, read pp. 191-192, Ex. 1-41 odd p. 192; 11-29 odd pages 177-178.

Wooton, read pp. 116-120, Ex. 11-26(written) pages 119-120.
Payne, read PP. 105-107, Ex. 1-23 odd P. 106.
Pearson, read pp. 150-153, Ex. 1 b, $c, d, e, 1, j ; 2$ and $3 a, b, c, j, k$, $1, p, q, 5$; and 4 pages $152-153$.

Games: Equations

Ob1. 4

Vanatta, read pp. 53-54, Ex. 5-20 p. 55.
Dolciani, read pp. 86-87, 91-93, Ex. 1-4, 11-15, 29-33 page 88; 1-26 odd (written) p. 93.

Nichols, read pp. 193-196, 178-180; Ex. 1-45 (every fourth one) pp. 195-196; 1-39 every fourth one pp. 179-180.

Wooton, read pp. 116-120, 131-134, Ex. 27-55 odd page 120; 1-39 odd page 134.

Payne, read pp. 107-110, pp. 112-114, Ex. 1-55 every 4th one pages 109-110; 1-39 every fourth one pages 113-114.

Pearson, read pp. 154-156, pp. 174-175, Ex. 1 EOL, 3,6,9 pages 155-156; 1 a, c,e,g,1,h; 2 a,c,e,g; 3 a, c,e,g; $4 a, c, e, g, 1$ page 175.

* Appendix I

Audfo Tipes: (-3801 Open Phrase, Open Sentence

Filmstrip: Proof in Algebra: Solving Equations
Games: Equaticns
obj.

1. Classify each sentence into one of the following categories:

2 if the sentence is truc.
P if the gentance is false.
R if at least one replacement, but not every replacement, for the variable or variables will reault in a truc statenent.

N $1 f$ the sentence is netthor true or false and there is no replacement for the variable or variableo mish will reault in a true statement.

E if the eentance is nelther true or false and every replacement for the variable or variables mill reoult in a true. sentence.

a. $\mathrm{x}+1=2 \mathrm{x}$	_-J. $d^{2}=-4$
_b. $2=1.4$	_re $\frac{1}{8}=.125$
c. $9=3 \times 3$	$\text { 1. } \frac{1}{3}=33 \frac{1}{3} \pi$
__d. $12=6 \pm 6$	—m. $\mathrm{m}^{\text {3n }}$ n $=3$
e. $1 y+11=10$	_n. $-(x-y)=y-x$
1. $1 \%=.1$	_-0. $-1(x-4)=4-x$
8. $a=2 a$	__p. $x-y=y-x$
b. $c+1=c$	__q. $-2(x-y)=(y-x) \cdot 2$

-

1. $7 r-r=6 r$
II. Determine the solution sets. Show all steps and give reasons for parts b and c.
a. $x-3=6$
b. $x+-2=5$
c. $y-14=4$
d. $12=b-1$
e. $26=x+16$
f. $t+\frac{1}{5}=3 \frac{3}{5}$
g. $2.5=r-1.5$
h. $.05+x=3.5$

$$
\text { 1. } x+2.34=3.06
$$

3 III. Determine the solution sets. No denominator is zero. Show all steps and give reasons for parts a and g.
a. $2 a=22$
f. ky $=60$
b. $3 x=5$
c. $\quad 3 m-3$
g. $\frac{2}{3} a=4$
d. $4 x=25$

1. $\frac{22}{7}=\frac{3 y}{7}$
e. $4=\frac{m}{4}$

4 IV. Determine the solution sets if the universal set is the set of real numbers. No denominator is zero. Show all steps and give reasons for parts a and c only.
a. $3 u+5=1$
h. $7(z-1)-2(2 z-3)=0$
b. $2 w+3=5$

1. $3 x-7=-(7-3 x)$
c. $\frac{3 x}{2}-6=7$
j. $\frac{4 x+7}{3}=\frac{4}{3} x+7$
d. $28 x+11=9 x-70$
k. $\frac{x-3}{x}=\frac{1}{6}$
e. $\frac{1}{2}+\frac{1}{3} x=1$
f. $3 n+50=-10$
2. $\frac{7}{y+2}=\frac{11}{y}$
g. $\frac{p+1}{2}=2$
m. $\frac{2 x+11}{4}=\frac{3 x-7}{5}$
ก. $8 x+91=-5 x-17$

4
V. Write the reason for each step in the following:
(1) $6 x+1=9$
$6 x+1-1=9-1$
$6 x+0=9-1$
equation
$6 x=9-1$
b. \qquad
c. \qquad
$6 x=8$
d. \qquad
$\frac{6 x}{6}=\frac{8}{6}$
e.
$£$. \qquad
$x=\frac{8}{6}$
8. \qquad
$x=1 \frac{1}{3}$
(5)
h.

SELF-EVALUATION 1 (cont')

(2) $\frac{3 x}{2}-1=4$

$$
\begin{aligned}
& \frac{3 x}{2}-1+1=4+1 \\
& \frac{3 x}{2}+0=4+1
\end{aligned}
$$

$$
\frac{3 x}{2}=4+1
$$

$$
\frac{3 x}{2}=5
$$

$$
\frac{3 x}{2} \cdot 2=5 \cdot 2
$$

$$
3 x: 1=5 \cdot 2
$$

$$
3 x=5 \cdot 2
$$

$$
3 x=10
$$

$$
\frac{3 x}{3}=\frac{10}{3}
$$

$$
1 \cdot x=\frac{10}{3}
$$

$$
x=\frac{10}{3}
$$

$$
x=2 \frac{1}{3}
$$

equation
a.
b.
c.
d.
e.
f. \qquad
8.
h. \qquad

1. \qquad
2.
3.

m. \qquad

If you have satisfactorily completed your work, you may take the Progress Test. CONSULT YOUR TEACHER FIRST.

Behavioral Objectives

At the completion of your prascribed course of study, you will be able to:
5. Given any mathematical sentence involving absolute value, determine the solution set.
6. Given any verbal problem, translate it into an equivalent mathematical sentence and find its solution set.
7. Given any statement using the properties of inequalities, determine if it is true or false. Appendix II will be completed and turned in to the teacher.
8. Given any inequality whose Universal set is the set of real numbers, determine and/or graph the solution set on the number line.
9. Given any pair of polynomials, write their product.

RESOURCES

Obj. 5

Nichols, read pp. 186-188; Ex. 1-29 odd page 188.
Payne, read pp. 148-151; Ex. 1-23 odd page 149.
Wooton, read pp. 165-168, Ex. 1-23 odd page 168.
Pearson, read pp. 217-219, page 224 Ex. 3, Ex. 6 page 219; 13 page 226.

Obj. 6
Vanatta, read __, Ex. 1-14 page 74.
Dolciani, read page 92, Ex. 1-8 page 94.
Nichols, read pp. 180-182, pp. 214-217, pp. 221-223, Ex. 1-10 pages 181-182; 1-9 odd pages 216-217; 1-8 odd pages 222-223.

Wooton, read pp. 120-123, pp. 124-130, pp. 131-133, Ex. 1-6 pages 122-123; 1-27 odd pages 128-130; 1-21 odd pages 134-136.

Payne, read pp. 132-136; Ex. 1-9 odd pp. 133-134; 1-15 odd pages 134-135; 1-8 odd pages 136-137.

Pearson, read pp. 157-159, Ex. 1-19 odd pages 158-159; 5-17 odd pages 17Є-178.

Audio Tapes: C - 3809 Reading Written Problems

Obj. 7
Vanatta, read pp. 55-58, Ex. \qquad -

Dolclani, read pp. 159-163, Ex. \qquad -

* Appendix II

Transparencies: Properties of Inequality
(* required)

Obj. 8
Vanatta, read pp. 55-58, Ex. 1-10 page 58.
Dolciani, read pp. 159-162, Ex. 1-10, 14-16 page 163.
Nichols, read pp. 182-185, pp. 241-246, Ex. 1 a,c,e, $, 1, k$ pages 183-185; $2 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$ and $3 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$ pages 183-185; $1 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, 1$, k, m, o, q, r and $2 a, c, e, 8$ and $3 a, c, e$ page 244.

Wooton, read pp. 157-159, Ex. 1-10 page 159.
Payne, read pp. 117-122, p. 124 exercise 5; Ex. 1-19 odd pp. 119122, 2.3-29 odd pages 119-122; 11-25 odd page 126.

Pearson, read pp. 72-74, Ex. $1 c, d, h, 1,1$ and $4 a, c, d, 8,1$ pages 73-74.

Audio Tapes: C-3805 The Compound Sentence C-3806 Inequality and Equality Sentences

Filmstrip: Graphs of Inequalities in One Variable
Transparencies: Properties of Inequality

Obj. 9
Vanatta, read pp. 289-290, 293-294, Ex. 1-20 even p. 290; 1-30 odd pp. 294-295.

Dolciani, read pp. 206-207, 209, Ex. 1-6 oral page 207; 1-20 even page 210.

Nichols, read pp. 199-201, Ex. $1 a, c, e, g, 1, k$ and $2 a, c, e, 8,1, k, m$, $0, q, s, u, w, y$ page 201.

Wooton, read 272-275, 277-279, Ex. 1-23 odd pages 274-275; 13-39 odd page 279.

Payne, read Pp. 313-317, Ex. 1-29 odd p. 315.
Pearson, read pp.170-173, Ex. 1, 5. 7 pages 172-173.

Obj. I: Solve the following:

5
(b) Multiplying a no, by 3 gives the same result as adding 4 to the number. What is the no.?
(c) Taking one-half of a number gives the same result as adding 5 to the number. What is the no.?
(d) How long is a rectangular plot if its length is 9 ft . longer than its width, and its perimeter is $94 \mathrm{ft} . ?$
(e) The difference between the length and the width of a rectangle is 11 inches. What is the length and the width of the rectangel if its perimeter is equal to 26 inches?

7
(a) $|x|=8$
(d) $|6-2 x|=2$
(b) $|x-3|=4$
(e) $\left|\frac{1}{2} x+4\right|-2=3$
(c) $|3 t+1|=7$
(f) $\left|\frac{2+x}{3}\right|=2$
II. Write the equation used to solve each verbal problem and solve the problem. Show your work.
(a) The sum of a number and 1 is equal to the product of 3 and the number. What is the number?

III. TRUE OR FALSE.

8 IV. On the number 1ine, graph the solition set of each inequality. The universal set is the set of all real numbers.
(a) $p>3$

(b) $-3 \leq a \geq 2$

(c) $-2 \leq x \leq-\frac{1}{2}$

(d) $x<-3$ or $x \geq 4$

(e) $a \leq-2$ or $a \geq 0$

8 V. Solve and graph the solution sets of the following:
(1) $3 x+6<33$

(2) $-6 x+1 \geqq-11$

(3) $\frac{-4 x}{2}-6 \leqq-12$

(4) $\frac{2 x}{3}-6>0$

9 VI. For each of the following expressions, write an expression which is equivalent to it and which does not contain parenthesis.

$$
\begin{aligned}
& \text { a. }-3(2 a-5 a+4 a) \\
& \text { b. }(a+4 a)(a-a) \\
& \text { c. }(4+5 a)(5 a-4) \\
& \text { d. }-(x-1)(1-x) \\
& \text { c. }(2 a+3)(2 a+b) \\
& \text { f. }(2 a+3)(2 a-3)
\end{aligned}
$$

If you have satisfactorily completed your work, take the LAP Test. CONSULT YOUR TEACHER FIRST.

APPENDIX 1

L. Write an explanation of the addition property of equality.
2. Write an explanation of the subtraction property of equality.
3. Write an explanation of the multiplication property of equality.
4. Write an explanation of the division property of equality.
5. Write the reason for each in the following.

$$
\text { (1) } \begin{aligned}
2 x & =10 \\
\frac{2 x}{2} & =\frac{10}{2} \\
1 \cdot x & =\frac{10}{2} \\
x & =\frac{10}{2} \\
x & =5 \\
\text { (2) } \frac{x}{3} & =10 \\
\frac{x}{3} \cdot 3 & =10 \cdot 3 \\
x \cdot 1 & =10 \cdot 3 \\
x & =10 \cdot 3 \\
x & =30 \\
x+2 & =9 \\
\text { (3) } x+2-2 & =9-2 \\
x & =0=9-2 \\
x & =9-2 \\
x & =7
\end{aligned}
$$

APPERDIX 1 (cont')

(4) $y-3=7$ $y-3+3=7+3$

$$
y+0=7+3
$$

$$
y=7+3
$$

$y=10$
(5) $3 x+6=33$

$$
3 x+6-6=33-6
$$

$$
3 x+0=33-6
$$

$$
3 x=33-6
$$

$$
3 x=27
$$

$$
\frac{3 x}{3}=\frac{27}{3}
$$

$1 \cdot x=\frac{27}{3}$
$x=27$
$x=9$
(6) $\frac{-3 n}{4}-2=4$
$\frac{-3 n}{4}-2+2=4+2$
$\frac{-3 n}{4}+0=4+2$
$\frac{-3 n}{4}=4+2$
$\frac{-3 n}{4}=6$
$\frac{-3 n}{4} \cdot 4=6 \cdot 4$
$-3 n \cdot 1=6 \cdot 4$
$-3 n=6 \cdot 4$
$-3 n=24$
$\frac{-3 n}{-3}=\frac{24}{-3}$
$1 \cdot n=\frac{24}{-3}$

$$
n=\frac{24}{-3}
$$

$$
n=-8
$$

APPENDIX 2

1. Explain the following:
A. If $a<b$, then $a+c<b+c$: and $a>b$, then $a+c>b+c$.
B. If $a>b$, then $a-c>b-c ;$ and $a<b$, then $a-c<b-c$.
c. If $a>b$ and $c>0$, then $a c>b c ;$ and $a<b$ and $c>0$, then $a c<b c$.
D. If $a>b$ and $c<0$, then $a c<b c$; and $a<b$ and $c<0$, then $a c>b c$.
E. If $a<b$ and $c>0$, then $a+c<b+c$.
F. If $a>b$ and $c<0$, then $a+c<b+c$.
2. True or False.
\qquad 1. If $-2 x<8$, then $x<-4$.
3. $3 x<9$, then $x>3$.
\qquad 3. $x+3<6$, then $x<3$.
\qquad 4. If $-\frac{x}{6}>2$, then $x<-12$.
\qquad 5. If $x-3<5$, then $x>8$.
\qquad 6. If $-6 x>12$, then $x>-2$.
4. If $\frac{x}{3}<9$, then $x>27$.
\qquad 8. If $6 x<18$, then $x<3$.
\qquad 9. If $x-8<28$, then $x<20$.
5. If $2 x+9<19$, then $x<5$.
6. Work the following. Show your work.
7. A car otiarta out at a point 3 miles outaide of town at a rate of 50 mph . How long will it take for the car to be 353 alles srom the towa? ($\alpha=\Sigma t$)
Total diatance $d_{t}=$ rete timen time $(r t)$ piue the 3 ailes out of the town.

$$
\begin{aligned}
& 353=50(t)+3 \\
& \text { solve for } t
\end{aligned}
$$

\therefore : An airplane travole 702 allea fran ite point of origin to 1 to destination, it ade one otop to pick up passengers and then flew at a rete of 310 aph . for 2 houre to arrive at ite teratnel point.

Given the equation $d_{t}=d_{1}+d_{2}$
But $d_{2}=$ Rot $=310(2)$ SO:
$702=d_{1}+310(2) \quad$ e01ve for d_{1}
II. Work the iollowing, showing your work.

1. The total elestrical reaistance in a eerien cirouit is equal to the oum of the indiridual reaiatances. If the firat realator has a rating of two ohms (a measure of resistance), and the second realatorn rating is 7 ohras, then ahat 10 the ohin ratlag of the third resistor, given the total circult resiatance $i s 10$ ohme?

Write the equation.
Solve the obl rating of the thind reaistor.
2. The total electrical resistance in a parallel circuit may be found by equating the reciprocal of the total reaistance to the sum of the reciprocsis of the individual reaiatances.

$$
\begin{aligned}
& r_{1}=3, r_{2}=6, r_{3}=? \text { Total resistance is } 1 \text { olm } \\
& \text { Write the equation, then solve for } r_{3} \text {. }
\end{aligned}
$$

3. The focal length of a lens can be found by dividing the product of the inage diatance $\left(d_{1}\right)$ and the object dietance $\left(d_{0}\right)$, by their Bum.

Write the equation, if the focal distance is 1 and the object diatance 182.

ADVANCED STUDY (cont')

III. Wooton, read pp. 160-163, Ex. 1-26 even (written) pp. 164-165.

IY. Wooton, Ex. 10-18 page 174 any 4 problems.
V. Dolciani, Ex. 23-32 page 163 any 5 problens.
VI. Dolciani, read 164-165. Ex. 1-20 any 8 problems.
VII. Dolciani, page 168 any 5 problems.

REFERENCES

Nichols (abbreviation)

Nichols, Eugene, D., Modern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965.

Pearson (abbreviation)

Pearson, Helen R., and Allen, Frank B., Modern Algebra: A Logical Approach, Ginn and Company, 1964.

Payna (abbreviation)

Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Francls, Algebra One, Harcourt, Brace and World, Inc., 1969.

Wooton (abbreviation)

Dolciani, Mary P., Wooton, William, Beckenback, Edwin Fr., Jurgensen, Ray C., Donnelly, Alfred J., Modern School Mathematics, Algebra 1.

Dolciani (abbreviation)
Dolciani, Mary P., Berman, Simon L., Freilich, Julius, Modern Algebra, Book 1, Houghton Miffiln Co., 1965.

Vanatta (abbreviation)

Vanatta, Glen D., Goodwin, A. Wilson, Algebra One, A Modern Course, Charles E. Merrill Publishing Co., 1966.

Wollensak teaching tapes $\mathrm{C}-3801, \mathrm{C}-3873, \mathrm{C}-3805, \mathrm{C}-3806$, and $\mathrm{C}-3809$
Transparencies: 3 M Properties of Equality Properties of Inequality

Filmstrips: Proof in Algebra: Solving Equations Graphs of Inequalities in One Variable

Games: Equations by Layman Allen

EARNING

I
CTIVITY

ACKAGE

equations I. nd inequalities WITH TWO VARIABLES

RATIONALE

equations of tin vartarl fs

Graphs are not new to your. In your study of history, geography, and science, many relationships were made clear by graphing. For example, temperatures in relation to altitude might be indicated by means of a graph. Here the temperature depends upon the altitude. When a quantity depends upon another so that corresponding values can be determined, a graph of their corresponding values can be made.

You have learned how some physical problems can be translated into aquasions and inequalities. You will continue to learn about word problems in this LAP. You will also learn how to set some of these ifeas in a pictorial manner. Their notions should be more meaningful to you through grapining.

Since an equatioil or inequality represents a relationship of variables, we can associate a point with each pair of values, of this relationship.

We shall study graphs, which will help us gain insight into relationships described by equations and inequalities.

Behavioral Objectives

At the completion of your prescribed course of study, you will be able to:

1. Given an equation in two variables and an ordered pair of rumbers for replacements of those variables, tell whether the resulting equation is true or false.
2. Identify or define the following:
A. Carteaian coordinate system
B. Deacartes
C. absciesa
D. ordinate
B. origin
3. Given an ordered pair of real numbers, iocate the point on a coordinate syatem correoponding to that ordered pair.
4. Given an equation of two variables put it in etandard form.
5. Given an equation in two variables, name at least three ordered paite of real numbera that are menbers of the solution set.
6. Given an equation or inequality of two variablea, graph it.

RESOURCES

ODS. 1
Dolclani, read pp. 333-335, Ex. 1-10 orel p. 335.
Michols, read pp. 259-260, Ex. 1-12 pages 260-261.
Wooton, read pp. 189-192, Ex. 1-10 page 192.
Pearson, read pp. 428-431, Ex. 1-3 page 431.
C. Algebra (programned) Framea 65-90.
C. Geomatry (programed) Frames 1-83.
081.2

Dolciani, read pp. 365, 337-338, Ex. 1-32 page 339.
Vanatta, read pp. 191-195, write definitions in obj. 2.
Wooton, read pp. 194-195, Ex. 1-6 oral pages 195-196; write definitions in Obj. 2.

Obj. 3
Vanatta, read Pp. 193-195, Ex. 1 page 196.
Dolciani, read pp. 337-338, Ex. 1-12 page 340.
Nichols, read pp. 263-264, Ex. 1-6 pages 264-266.
Wooton, read pp. 194-195, Ex. 1-14 (written) pages 196-197.
Payne, read pp. 167-170, Ex. 1-14 pages 170-172.
Pearson, read pp. 431-432, Ex. 1-4 page 432; 1-5 pages 436-437.
C. Algebra (programmed) read Unit 1 - Book 3, Ex; Frames 1-65.
C. Geometry (programmed) Frames 128=181; 329-338.

Obj. 4
Vanatta, read pp. 246-248, Ex. \qquad .

Nichols, read pp. 261-262, Ex. 1-16 page 262.
Wooton, read pp. 197-200, Ex. 1-6 page 201.

Obj. 5
Nichols, read pp. 266-267, problems assigned in next objective.
Wooton, read pp. 197-200, Ex. 7-12 page 201.
C. Algebra (programmed) read Unit 1, Book 3, Ex - Frames 66-98.

Obj. 6.

Nichols, read pp. 266-267, 276-280, F.x. 1-12 pages 267-268; 1-4 pages 280-281.

* Payne, read pp. 178-180, 265-207, Ex. 14-21 page 181; 1-10 even page 207.

Pearson, read pp. 448-451, 487-489, Ex. 1-2 page 452; i-2 page 488; $1-7$ parts a and b only page 490.
C. Algebra (programmed) read Unit 1, Book 3, Ex. frames 99-132 Unit 1; frames 1-124 Unit 2.
C. Geometry (programned) read Unit 2, Book ?, F. frames 182-291 and 324-379.

* required

Cbj.
1 I. Next to the equations listed below, there are 3 ordered pairs of numbers; tell ohother or not it entiafice the equations.

1. $x+y=7 ;(6,1) ;(-10,3) ;(6.99, .09)$
2. $2 x+3 y=6 ;(0,2) ;(2,0) ;\left(1, \frac{4}{3}\right)$
3. $\quad 3 \mathrm{n}=2 \mathrm{n}+4 ;(0,-2) ;(-2,0) ;(-5,-2)$
4. $\frac{1}{2}|x+J|=\frac{1}{3}|x-y| ;(0,0) ;\left(6,-\frac{6}{5}\right) ;(6,-3)$
5. $2 a=3|b|-1 ;\left(0, \frac{1}{3}\right) ;\left(0,-\frac{1}{3}\right) ;(-4,-3)$

3 II. Graph the following ordered pairs on the coordinate sybtem to the right.
6. $(5,3)$
7. $\left(-2,3 \frac{1}{2}\right)$
8. $(-4,-6)$
9. $\left(2 \frac{4}{5},-3\right)$
10. $(0,-4)$
11. $(-2,0)$
12. $(0,2)$
13. $(0,0)$
14. $(5,0)$

2 III. Define the following terms.
15. abscissa
16. origin
17. Descartes
18. Cartesia: currdinate system
19. ordinatu

4 IV. For each equation brinw, find an equivalent equation in standard form.
20. $2 x=-3-8 y$
21. $\frac{Y}{x} \frac{-y}{x+y}=3$
22. $3 x-2 y+(-3)-2(3 y-6 x)+4$
23. $\frac{4 x+2}{6}=\frac{-3 x+6 y}{-2}$
24. $\frac{-2}{3 x+7 y}=\frac{-4}{5 x-2}$

5 V. Thich of tho ondered gatre liutad to tho richit cres moners of tho
 one anownir for eatil (n:
25. $2 x-3 y=12$
a) $(3,-1)$
26. $2 x+3 y-1=x+y$
b) $\left(\frac{3}{2},-3\right)$
27. $\frac{x+x}{3}=2 x$
c) $(0,0)$
d) $(6,0)$
e) $(1,5)$
f) $(1,0)$

VI: Graph each of the following aentences. The uniarsal set in each case is the set of real numbers. (Use the graph , ber arovide:l)
28. $y=2 x+6$
29. $2 x+3 y>1$
30. $\frac{2(3-3 x)}{y+1}=-3$
31. $2 x-y=4$
32. $x-y \leq 3$
33. $2 x-y>-4$

If you have satisfactorily completed your work, take the Progress Test. CONSULT YOUR TEACHER FIRST.

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:
7. Given a system of equations in two variables, graph their solution set.
8. Given the graph of a pair of equations \ln two variables, tell whether they are:
A. dependent
B. inconsistent
C. Independent
D. consistent
and if they are independent, name the point of intersection.
9. Given a system of equations and/or inequalities in two variables, graph their solution set.
10. Given a word problem, translate it into an oper mathematical sentence and solve for the unknown.

RESOURCES

Obj. 7
Yanatta, read pp. 233-234, Ex. 1-8 page 241.
Dolciani, read Pp. 267-269, Ex. 1-8 page 369.
Nichols, reat pp. 268-270, Ex. 1-13 pages 270-271.
Wooton, read Pp. 223-225, Ex. 7-15 page 228.
Payne, read pp. 219-221, Ex. 1-10 pages 222-223.
Pearson, read pp. 465-466, Ex. 1-3 page 466.
C. Algebra (programmed) read Unit 3, Book 3 (includes obj. 9) Ex. frames 8-105.
C. Geometry (programmed) frames 181-191; 324-279.
obj. 8
Vanatta, read pp. 233-234, Ex. given for obj. 7.
Dolcinal, read pp. 367-369, Ex. given in obj. 7.
Nichols, read pp. 271-275, Ex. 1-10 page 276.
Payne, read pp. 234-235, Ex. 1-18 odd page 243 (do not use slope; use graph method)

RESOURCIS 2 (cont')

Pearson, read pp. 480-481, Ex. 1-9 page 482.

Obf. 9
Dolciani, read pp. 350-352, 379-380, Ex. 1-12 even written page 352; 9-11 page 370; 5-14 even page 380.

Nichols, read pp. 281-284, Ex. 1-3 page 284.
Wooton, read pp. 252, Ex. 1-12 page 253.
Payne, read pp. 214-222, 244-245, Ex. 11-14 page 223 ; 1-10 page 246.
Pearson, read pp. 490-491, tix. 1-2 page 491.
C. Geometry (programmed) frames 324-477.
C. Algebra (programmed) (same as obj. 7)

Obj. 10
Vanatta, read pp. 154-158, 164-166, 169-170, 214-216, 235-237, Ex. 1, $2,8,10,14$ page 156; 1-9 page 159; 1,2 pages $166-167 ; 17$ page 177; 11 page 175; 6 page 178; 1,2,4,5,10 page 170.

Dolctant, read pp. 166-171, 172-175, 178-180, 182-183, 310, Ex. 1,2, 4,10,19 page $168 ; 6,7$ page $167 ; 1,4,7,10,13$ bottom page 171; 4, 5,6 page 177; 1-3 pages 180-181; 2-5 page 183; 1,3-5 page 311.

Nichols, read pp. 223-228, Ex. 1-14 even page 224-225; 1-9 even, 11 pages 227-228.

- Wooton, read pp. 169-172, 353-355, Ex. 1-36 even pages 173-176; 1-30 even pages 356-358.
Payne, read pp. 128-136, 139, Ex. 1-9 pp. 133-134; 1-15 even pages $1: 34-135 ; 1,3,5$ page 136; 1-4 pages 139-140.

Pearson, read pp. 251-252, 296-299, Ex. 1-30 even pages 252-253.
obj.
7 I. Graph each system of equations and name the point intersection. (approximately) Use the graph paper provided.

1. $2 x-y=0$
$2 x+y=-4$
2. $3 x+y=10$
$2 x-y=1$
3. $4 x=2 y$
$2 x-y=2$
4. $3 x+5 y=4$
$12-9 x=5 y$
5. $2 x+3 y=8$ $x+y=3$
6. $x+y=1$
$y=-x$

8 II. Categorize the following graphs of pairs o_{t} equations as being
(a) dependent (b) inconsistent (c) consistent (d) independent and if they are independent, name the point of intersection.
\qquad 7.

\qquad 8.


```
SELr-Ev:.. \thereforel !"ont''
```

\qquad 9.

9 III. Graph the following systens. ist: the graph paper provided.
10. $3 \mathrm{x}=2-\mathrm{y}$
$3 y+3 x=0$
11. $2 \mathrm{x}>\mathrm{y}$
$3 x+5 y=y$
12. $2 x+y=6$
$x+y=y+3$
13. $3 x<2-y$
$3 y+3 x>0$
IV. Nork the followiag problems. SHUN YOUR WORK.
14. Two men start out from the same city and travei in opposite directions. One travels nortin at an average rate of $3: 5 \mathrm{~m}, \mathrm{~h}$ and the other man travels south at 40 mph . In how mar; i: iurs will they be 250 miles apart?
15. The sum of four consecutive odd integers is 152 . What : : the integers?
16. Jim and Jue ride their meturifikes in opposille direcrimor ima
 find them 19 wiles apart ! 5 mates later. ith: averi of Joe!s bike is 8 miles p... hou: tess thin tire ave. of Jim's bike. Deterain ? a aver spord :t : 't
 more dimes than she has :ochela, Hial she hat. ©l.je. :\%

 solution to reduce it to a 1.5 solition?

A

Work the following problems, Show your wark and turn it in to your teacher with this sheet.

1. Tony broke his bank and found he had (;) in 1 th ni:kel:s an: d:m:.
 and how many dimes did he have?
nickels
dimes

2. Mr. James weighs $3 u$ pounds more than his son. His son weignis iv: : as much as Mrs. James. Their combined wight is 495 pounds. 5 . $:$: . does Mr . James weigh?
\qquad
3. Jim and John went hunting and shot $2 i$ a bhits in all. John sh: : three less rabbits than Jim. How many did each boy shoot?
4. A man purchases some three-cent stamps and some one-cent stamp. $\mathrm{t}:$: \$3.05. There are 19 more three-cent stamp than one-cent stal:: How many of each kind does he buy?
number of $3 c$ \qquad
number of lc \qquad
5. At a certain time two airplanes start $\mathrm{f}_{\mathrm{i}} \mathrm{Jm}$ the same airport and travel in opposite directions at $300 \mathrm{~m}: \mathrm{les}$ an hour and 250 miles an . hour respectively. In how many hous will they be 13.75 wi ie; apart?
\qquad
6. At a certain time a train leaves New Yolii going to Alban; trat t!... at 75 mph . At the same time a train lui:As Alhany going to A. : . : traveling at 50 mph . In how many hour: will they meet if New: $:$ is 375 miles from Albany?
7. John left Greenville traveling to At la:a... !! iving 40 mph . At same time Sam left Atlanta travelins, formville drivin: In how many nours will they meet if cireanille is lon mila.. i. Atlanta?
\qquad
8. How much water must be added to a bart:1 whaining 48 prani.. 10% brine to obtain a 6% brine?
9. How many ounces of water must be added to 80 ounces of a 5% acid solution to produce a 2% acid solution?

ADVANCED STUDY

I. wizture problem from chemistry:

What quantities of gold 80% and 20% pure should be mixed to give 12 gram of 70% pure gold?

Let $x=80 \%$ pure gold
$y=20 \%$ pure gold
$.4 x=\mathrm{gm}$ of gold in 60%
. $6 \mathrm{y}=\mathrm{gm}$ of gold in 20%
So the two equations are

$$
\begin{aligned}
& x+y=12 \\
& .3 x+.2 y=12(.7)
\end{aligned}
$$

Graph to find x and y

A 12 volt D.C. generator cen charge a battery at the rate of 20 amperes which is 20 coulombs of charge per second. It starts charging a new battery at 1:30 P.M.
Another D.C. 12 volt generator can charge a battery at the rate of 40 amperes. It tarts charging a similar battery at 2:30 F.L. When will both batteries have the mane charge? what will the charge be?

Let $(0,0)$ be time to $=1: 30$ with 30 min . intervals. Plot the second battery and find the time of equal charge, and the amount of charge?
III. Work any 5 of the following froblems:
A. Dolcjani, page 172, numbers 14-18.
3. Nichols, page 227. nos. 7-9.
IV. Work any 5 of the Eollowing:
A. Dolciani, page 182 , numiers $13,14,16$; page 19 , rimbers $56,38$.
B. Nichols page 176, number lif page 177 , nunber 4
V. Work any 6 of the following:
A. Dolciani, page 184, numbers 13,14; page 311, numbers 9,10; page 318, numbers 1-5.
B. Vanat. ia, page 176, numbers 9, 20; page 178 , nuniber 7 .
VI. Payns, page 244, numbers 23-26.

Payne, page 247 , numbers $1-6$.
VII. Payne, read pp. 250-252, Ex. 1-4 pages 252-253.

Nichols (bbreviation)
Nichols, Eugene, D., Monctn finmentary Algebra, Holt, RInehart and winaiom, Inc., 0965 .

Pearson (abbreviation)
Pearson, Helen R., and Alle:, Frank B., Modern Algebra: A Logical Approach, Ginn and Company, 1964.

Payna (abbreviation)

Payne, Joseph N., Zambohf, Fluyd F., Lankford, Jr., Francis, Algebra Ore: :arcourt, Brace and World, Inc., 1969.

Wooton (ablreviarion)

Dolctawi, Mary P., Woocon, William, Beckenback. Edwin Fr., Jurgenser., Ray C., Donnelly, Alfred J.. Modern School Mathematics, Algebra 1, Houghton: MiEflin Company, 1967.

Dolciani (abbreviation)
Dolciani, Mary P., Berman, Simon K., Freilich, Julfue, Modern Algebra, Book 1, Hnughton Miftlin Co., 1965.

Vanatta (abbreviation)

Vanatta, Glen D., Gcnewin, A. Wlbou, Aigebra Dne, i Modry Course, Charles E. Merrill Publisning Co., 1966.

Programed Alfebra (abbreviaiion)
Helmer, Halph T., Kocher, Prank., and Lotten, John, ä., A frogram in Coritemporary algebra, Book 3, Equaidmit res Inequalities in Tho itaritiblea, Holt, Binehurt and fi : New York, R. Y., 1963

Programed Georaetry (a!i,i viation:
 to Coordinate Gra' a: hric, Holt, R1nehart and atnator. in

I. Read Rationele
II. Read BEHAVIORAL OBJi. ;IVR
III. Resouri: 33
 pon:I c : 1 y .
B. Kesp your notewn in

 \therefore cued go:i. !itay: noreborl rat guar ter?
iv. Solf-tivaduation
 anch zection.
B. Loes not affect your sula
V. Advanced Study
A. To be done on'tiatte: i: been satisfactoriby com: :

VI. Progross mest, end leAE ine:
A. Teacher graded
B. Recycing me: toper r
is not satiafyrion.

DO NOT LOSE YOUK IAP. If JUu A:,

BEST COPX
 Avillabilc

```
    Rationale (The LAF': Fu`r:.,
    A roturai pla!a to brat. .. . ... ; ...;
```



```
geta, aras grmphirge soma
```

Sectiton 1
 of study, yuid wi: . $\because: \% . \therefore$.
 it in set motation.

 jirit:
 wherher or ast the result is ty fomorer an :
 are prima \& thoze thr? aro ar. : ! . .
 matchine sets (one in ot: $\therefore . . . \mathrm{G}:$,

BEST COPY AVIILASLE

$$
\text { herr } \because \cdot
$$

Objective 1
Vanatta, read pp. 8-12, [x. $]$ pogia
Nichols, read no. 1-?, Ex. í fusi ard 0 ...

Objectivos ? ,
 13, 16 writise: (rosier ority; agge la.
objectives $4, \dot{A}$,


```
pager 4-6.
```



```
18, 19, page 27
Hootoi, read page 'm i8, e<. {init noge it
```



```
Objective 7
```



```
Nichols, rej: 4..fj: En. <-E vide f
Wollensak c-sulo, Prime wrmer
Objective 8
```



``` Nichols, rexd ringes 7, E, Ex. \(\because \because\)
Dolciani, read miges ;'-14 Ex. 5-i: ir':j:
Wooton, read pages {J-'3, E.x. 67,:% , \cdots.
Introduction to se,% %men 220-.!:
```


SELF-EVALUATION 1

OBJECTIVE
I. Match each exponential form on the left with its equivalent product on the right.
_1. 6^{4}
A. $2 \times 2 \times 2$

- 2. 3^{2}
B. 4×6
- 3. 2^{3}
C. 3×3
- 4.4^{6}
D. $6 \times 6 \times 6 \times 6$

$$
\text { E. } 4 \times 4 \times 4 \times 4 \times 4 \times 4
$$

II. In earl of the following, circle the exponent and underline the base.
(5) 6^{4}
(6) a^{4}
(7) b^{x}
(8) $\mathrm{x} \cdot$
III.A.Write each of the following in exponential form using 2 as the base.
9. 64
\qquad 10. 32
\qquad 11. 4
\qquad 12. 16
B. Write the following in exponential form using 4 as the base.
\qquad 13. 16
\qquad 14. 4
\qquad 15. 64
IV. Write the following as decimal numerals.
$16 \cdot 3^{4}$
$17 \cdot 5^{2}$

$18 \cdot 7^{2}$$\quad$| 19, $\left(\frac{2}{3}\right)^{4}$ |
| :--- |
| $20 \cdot(-5)^{2}$ |
| $21 \cdot-4^{3}$ |
| $22 \cdot(-4)^{3}$ |

V. Simplify the following.
23. $3^{4} \cdot 3^{2}$
24. $x^{3} \cdot x^{4} \cdot x$

- 25. $a^{2} b^{3} a b^{4}$
—_ 26. $x^{2} y^{3} x^{4} y^{2}$

27. $\left(r^{2}\right)^{3}$

- $28 .\left(a^{5}\right)^{3}$

29. $\left(3 a b^{3}\right)^{2}$
…… ${ }^{3 i}$. (4xy2

- 31. $\left(3 \mathrm{a}^{2} \mathrm{a}^{3}\right)^{2}$
$-\cdots--.{ }^{32} \quad\left(\frac{a^{a}}{a^{3}}\right)^{2}$

$\ldots-34 \cdot \frac{13}{} \frac{13 x^{3} y^{2}}{3 x y}$
___ 35. $\left(\frac{a^{3}}{b^{3}}\right)^{2}$
-_ 36. $\left(\frac{-x}{y}\right)^{3}$
_ 37. $\frac{-48 r^{5} s^{7}}{-4 r^{2} s^{4}}$

38. $\left(r^{5}\right)^{3}$
39. $\left(3 \mathrm{r}^{2} s^{3}\right)^{4}$
40. $\frac{-15 r s^{4}}{3 r s}$

If ycu have satisfactorily completed your work, take the Progress 'rest. Consult your teacher first.

Behavioral otjject.ves

At the completion of your prescribed course of study, you will be able to:
7. Given any non-zero rational expression involving exponents, write equivalent expressions using only positive exponents.
8. Wise the distributive property to name the product of a monomial and a polynomial.
9. Given any positive number, express it in scientific notation.
10. five: a number expressed in scientific notation, express it as a decimal numeral.
1.. Oi: ti, tho m: nora numbers expressed in scientific notation, ind the indicated sum, difference, product or quotient.
12. i;iven a verbal problem involving very large or very small numbers, express the numbers in scientific notation and find the solution of the problem.

RESOURCES

Objective 7

Nichols, read pp. 320-324, Ex. 1-15 even page 322; 1-11 even top page 323: 1,2 every other letter bottom page $323 ; 3 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{f}$, g,h,j, $n, f, n, r, 6 a, b, c, i, j$ pages $335-336$.

Vanatta, read pp. 117-119, Ex. 1-40 even pages 119-120.
Dolciani, read pp. 232-233, Ex. 1-14 page 233.
Payne, read pp. 267-268, 273-274, Ex. 1-9 page 269.
Wooton, read pp. 324-326, Ex. 1-45 odd pages 327-328.
Pearson, read pp. 347-349, ER. 1 page 349; 3-7 page 350.
Introduction to Exponents frames 142-196.

Objective 8

Vanacta, read pp. 120-121, 137, Lx. $1-20$ even page 121; 1-20 even pages 137-138.

Objective 8 (cont')

Dolciani, read pp. 206-207, Ex. 1-14 page 207.
Wooten, read pp. 272-274, Ex. 1-18 oral page 274 ALSO,
(a) $2 x\left(3 x^{2}+2 x-5\right)$
(b) $2 a\left(a^{2}-3 a+2\right.$
(c) $3 y\left(2 y^{2}+y-3\right)$
(d) $5 \mathrm{~d}\left(6-\mathrm{d}+2 \mathrm{~d}^{-}\right)$
(e) $x y\left(x-2 x y+y^{2}\right)$

Pearson, read page 350 , Ex. 8 page 350.

Objectives $9,10,11,12$
:Hc:is!s, read pages 339-341, Ex. 1-3 pages 340-341.
Dolciani, read PF. 376-377, Ex. 1-17 page 278.
Payne, read p. 268, Ex. 25-55 page 269; 27-32 pace 250.
Žearan 1 , eat pages 350-351, Ex. 1-10 pages 351-353.
Untrod action to Exponents Frames 56-78 (Obj. 5) Frame a 79 (Obj. 12,

* Appendix 2
* Nichols Ex. 4 pages 340-341.
I. Write the following using only positive exponents and simplify.

1. $5^{9} \cdot 5^{-4}$
2. $\frac{x^{3} y}{x^{4}}$
3. $2 \mathrm{x}^{-3}$
4. $\frac{3 x^{-2}}{a^{4} b^{2}}$
5. $\frac{2 x}{8 \cdot}$
6. $\frac{2 x^{-6}}{-3 x^{4}}$
7. $x^{-2} y^{4}$
8. $\frac{x^{3} y^{4}}{x^{-4 y}=2}$
9. $\frac{5 x^{2}}{r^{-3}}$
10. $3 x^{-4}$
11. $\frac{6 x y}{-2-1}$
12. $\frac{3 b}{a^{-2} c^{4}}$
II. Sirplify the tollowing:
i3. $x(2 x-3 y+4 c)$
13. $a^{2}(3 a-2 b+c)$
14. $(3 x y)\left(2 x^{2} y^{3}\right)$
15. $\left(2 x^{3} y^{4}\right)\left(3 x y^{4}\right)$
16. $3 x^{2} y(2 x+3 y+4 x y)$
17. $-2 a^{3} b\left(a^{4} b-a^{3} b^{2}+2 a^{2} b^{4}-b^{5}\right)$
18. $3 x^{2} y\left(5-2 x y^{4}+3 x^{2} y^{3}-y^{5}\right)$
III. Express each in scientific notation.
19. $63.5=$
20. . $205=$
21. . $0024=$
22. $136,000,000,000=$
23. $.0000000612=$

10

Bi. (3.3× $30^{8} ;\left(2.3 \times 10^{2}\right)=$
it $5.2,153 \cdot 3 \times 10^{3}=$
$32 . \quad \frac{3}{2} \times \frac{10}{8} 10^{2}$
33. $\frac{14}{x \cdot \frac{114}{4} \times 2 \times 10^{-2}} \frac{10^{-6}}{}=$ \qquad
34. $\frac{3 \times 10^{-6} \times 21 \times 10^{4}}{9 \times 10^{-4}}=$ \qquad
VI. Solve each problem.
35. Give, in scientific notation, the number of minutes in a year. (1 year $=355$ days)
36. The speed of sound at sea level is 760 mph . Give this speed in feet per second written in scientific notation.

SELF-EVALUATION 2 (cont')

37. Spaceships travel at speeds of $18,000 \mathrm{mph}$. How many miles per second is this?
38. The sun is $93,000,000$ miles away from earth. How far is this in feet? Express in scientific notation.

If you have satisfactorily completed your work, take the LAP TEST. Consult your teacher first.

APPENDIX I

Objective

1 I. Write the following as a product where the factors are alike.
A. 7^{4}
B. 10^{2}
C. 8^{6}
D. 9^{3}
E. 6

2 II. In east, of the following, name the base and exponent.

s. ${ }^{\text {+ }}$	base	exponent
B. 8^{9}	base	exponent
©. 2	basoú	exponent
D. x^{3}	base	exponent
E. 5^{2}	base	exponent

4 III. Write each number on the left in exponential form using the number on the right as the base. Example $27=3 \times 3 \times 3=3^{3}$
A. 16 Use 2 as base
B. 9 Use 3 as base
C. 64 Use 4 as base
D. 64 Use 2 as base
E. 64 Use 8 as base

APPENDIX II

OBJECTIVE

9
$: 0$

1. $3 . \because 2 \times 10^{6}$
$\because \quad . \quad 12 x$!
2. $7.42 \times \times 10^{2}=$
3. $3.216 \times 10^{-7}=$
4. $6.014 \times 10^{4}=$

11
III. Compute the following:

1. $3 \times 10^{4} \times 6 \times 10^{6}$
2. $\left(4.1 \times 10^{6}\right)+\left(2.4 \times 10^{4}\right)$
3. $\frac{6.8 \times 10^{4}}{3.4 \times 10^{6}}$
4. $\left(6.1 \times 10^{3}\right)-\left(5.3 \times 10^{2}\right)$
5. $\left(7.6 \times 10^{10}\right)+\left(5.6 \times 10^{8}\right)$
6. $\frac{3 \times 10^{7} \times 15 \times 10^{-2}}{9 \times 10^{4}}$
7. $\frac{10 \times 10^{4} \times 2 \times 10^{7}}{5 \times 10^{8} \times 2 \times 10}$
8. $\left(4.5 \times 10^{2}\right)+\left(3.6 \times 10^{3}\right)$
9. (3.7 $\left.\times 10^{4}\right)-\left(2.3 \times 10^{2}\right)$

ADVANCED STUDY

1. Paynt, read pf. 257-259, Ex. 43, 45, 47 pages 259-260.
i.1. Nichols, read pp. 332-335, Ex. 1, 2, 3 c,e,1,m,p, 4 pages 335-336.

IfI. Write a mathematical formula for the volume of a cube of edge X. The volume of a cube is equal to the product of the length, width, and height. Given a cube, write the formula for its volume using exponents. What happens to volume if you should double the longth if the edge?
riv l, ligily ravela at a speed of chree hundred million meters per second. llow rar is the sun from the earth (meters) if it : Akes 8 minutes for light to travel. from the sun to the earth? Exirtess in scrercific notation.
2. A Radaz beam 1 a directed toward the moon and the reflected t.ean is recelved $2.6 \times 10^{\circ}$ seconds later. The beam travels c.t 1.5 s . 10 mlle per sec. How far is the moon from the earth? Enquess i: : ofentific notation.

REFERENCES

硅es st cor
AVAIlableNichols (abbreviation)Nichols, Eugene, D., Modern Elementary Algebra,Holt, Rinehart and Winston, Inc., 1965.
Pearson (abbreviation)Yearsoi, Helen R., and Allen, Frank B., ModernAlgebra: A Logical Approach, Gin and Com-pang, 1964.
Payne (aborcuiaticn)F- jat. .joseph N., Zamboni, Floyd F., Lankford, Jr.Ficus, Algebra One, Harcourt, Brace and World,sui., 1969.
Wooten (abbreviation)
Dolciani, Mary P., Wooton, William, Beckenback, Edwin Fr., Jurgensen, Ray C., Donnelly, Alfred J., Modern School Mathematics, Algebra 1.
Dolciani (abbreviation)
Dolciani, Mary P., Barman, Simon L., Freilich, Julius,Modern Algebra, Book 1, Houghton Miffing Co., 1965.
Vanatta (abbreviation)Vanatta, Glen D., Goodwin, A. Wilson, Algebra One,Charles E. Merrill Publishing Co., 1966.
Odom, Mary Margaret, Nichols, Eugene D., consulting Editor,
Introduction to Exponents, A Programmed Unit, Holt,
Rinehart and Winston; Inc.

1) 1 CKAGE

FACTORING AND POLYNOMIALS

RATIONALE

In arithmetic, before you could solve practical problems, you had to be able to perm form the fundamental operations with numbers. You ueeded to know the addition combinations before you could find the cotal cost of a number of itims. In order to find the cost of several pounds of an item at a given price per pound, you needed to know how to multiply. Before you could work problems containing fractions an:l decimals, you had to learn the operatiuns with those special types of numbers.

In algebra we will be dealing largely with polynomials. You must learn to perform the basic "perations with polynomials before you can use them in applications. In this LAP you will learn to use polynomials in add1tion, subtraction, multiplication, and division. You will also learn to solve equations involving polynomials.

Behavioral Objectives

At the completion of your prescribed course of study, you vill be able to:

1. Given an algebraic phrase, identily the coufficients, factors, terms and dugree of the phrase.
2. Given a polynomial of 1,2 , or 3 terms, determine if it is a monomial, biromial, or trinomial.
3. Civen a polynomial, write it in descending or ascending order.
4. Given any patr of polynomals cu: jute their
a. sum
b. ditference
c. product
d. yuutivilt.

RESOURCES

ObJECTIVE゙S 1,2.

Nichols, real pp. 119-120, 199-200, 384-385, Ex. 1 page 201.
Vandta, riad pp. 67-71, Ex. 2,3,4 page 71.
Payne, sead رp. 307-310, Ex. 1-27 pages 309-310.
Wooton, riad :p. 52-53, Ex. 1-19 odd oral page 54 ; 19-24 page 55.

* Appendix 1 parts I-III

OBJECTIVES 3,4

Vanetta, read pp. 133-135, 13i-139, 140-143, fx. 1-15 even p. 134; $1-12,1 j, 15,16,19$ page ; 36; 1-24 ev.i : 137; 1-24 even p. 139; 1-20 every 4 th preblem p. $140 ; 1-30$ evea p. 141; 1-20 even p. 144.

Dolctani, re: ifp. 199, 200-201, 2-3, 2-9, 219-222; Ex. 1-20 odd written p. 19y, $1-i s p .201 ; 1-9$ page $202 ; 1-20$ cven p. 210; 1-14 even p. 207;
 p. 223.

Wooton, riat :'f. 310-323, Ex. 19-28,33, 35 pites: 59; 17-49 ocid pages 8687; 1.4. udd p.ages 105-106; 1-23 odd pay.:s =74-275; 1-39 odd p. 27?; 1-17 eve!, bu:com p. 314; 1-29 udd pr. 313-320.

- Appendix 1 purts IV, V

ODS.

1

1. For the polynomial $2 a^{3}+4 a^{2} b^{3}+9 a^{2} c^{4}$ potato each of the followings
a. The deere: of polynomial
b. The degree of the polynomial with respect to a
c. The degree of tho polyagetal with raspoet th h
d. The degree of the polynomial with respect to 0
e. The coortilcient of a^{3}
f. The number of terms in the polynomial
II. Classify each of the folloutg on other a monomial, a binomial, or a tifucmial (all letters ara variables).
2. $x+y$ 5. 26
3. 48
4. $4.5 \mathrm{~s}-1.2 \mathrm{~b}+3.60$
5. - -
6. $\frac{1}{3}-\frac{1}{4}+\frac{1}{5}=$
7. $2 x-y-z$
8. 3 gs - $2 a b$

1II. Express the polynomial in ascending order of b and then in descending order of a
$3 a^{2} b^{2}-4 a^{3} b^{4}+2 a b^{3}+5 a^{4} b$
IV. Find sech els and arranges in order of decreasing derris in n.

1. $\left(3 n^{3}+5-2 n\right)+\left(n^{2}-6 n-8\right)$
2. $\left(2 m^{3} n-3 n^{2} n^{2}\right)+\left(4 m^{2} n^{2}-2 m^{3}\right)+\left(-2 n^{3}-7 m^{3} n\right)$

OBJ.
4 4 V.Add
(1) $3 x^{2}+6 x+4$
(2) $3 x y-6 x^{2}+3 y$ $-2 x^{2}-6 x+1$ $4 x y+2 x^{2}-4 y$
(3) $5 x^{2}-3 x+2$
$2 x^{2}-6 x-4$

SELF-EVALUATION 1 (cont')
(4) $\left(7 x^{2}+6 x+1\right)+\left(-4 x^{2}-3 x-6\right)=$
(5) $(-3 x+6 y-3)+(4 x-2 y-7)=$
VI. Subtract
(1) $3 x^{2}+6 x-1$
(2) $7 x+3 y-6$ $\underline{x^{2}-4 x+6} \quad-2 x-4 y+2$
(3) $8 x+6 y-7$ $-2 x+6 z+7$
(4) $(6 x+7 y-2)-(8 x+6 y-7)=$
(5) $\left(2 x^{2}+7 x-3\right)-\left(6 x^{2}+3 x+1\right)=$
ia,b ViL. simplify

1. $(3 x+2 y-1)+(4 x+6 y)-(2 x+3 y+2)=$
2. $\left(5 x^{2}-6 x+1\right)-\left(4 x^{2}+2 x+1\right)+\left(6 x^{2}+9 x-2\right)=$
3. $(4 x y-6 x+7)+(2 x y+0 x-2)-(4 x y+3 x-7)=$

4c VIII. ${ }^{\text {cultiply }}$

	1.	$(x+1)(x+5)$
2.	$(2 x-6)(2 x+7)$	
	3.	$(5 y+8)(4 y-3)$
4.	$(7 z-3)(6 z+2)$	
5.	$(8 x+4)(0 x-4)$	
6.	$\left(2 x^{2}+1\right)\left(3 x^{2}-5\right)$	
7.	$\left(4 x^{2}+1\right)\left(2 x^{2}-7\right)$	

4c 1X. dulifily

1. $x+6$
\qquad
2. $2 x-3$
3. $7 x-7$
4. $4 x^{2}+1$

$$
2 x^{2}-6
$$

0. $3 x^{2}+5 x-7$
1. $2 x y+3 x-1$
2. $-3 x^{2}+2 x-6$
\qquad
\qquad

$$
\begin{aligned}
& \left.\therefore \quad x^{2} \cdot x+1\right)\left(2 x^{2}+14\right) \\
& \text { iv. } \left.\quad x^{2}-3 \because+2\right)\left(3 x^{2}+4 x+3\right) \\
& \therefore \quad \therefore \quad 4 \\
& \therefore \quad x^{2}-(x+12 \quad: x-4
\end{aligned}
$$

2. $6 x^{3}-x^{2}+3 x-20 \div 3 x+4$
3. $30 x^{2}-28 x+0 \leq 5 x-3$
4. $2 x + 4 \longdiv { 2 x ^ { 2 } - 9 x - 3 4 }$
5. $x^{5}+32: x+2$
6. $7 x - 2 \longdiv { 1 4 x ^ { 3 } + 3 6 x ^ { 2 } - 5 x + 9 }$

If you have satisfactorily completed your prescribed coursi of study, take the PROGRESS TEST. CONSULT YOUR TEACHER FIRST.

At the completion of your prescribed course of atudy, you will be able to:
5. Write the prime factoriation of any given composite number.
6. Given any polynomial, express it in factored from when the polynomial:
\therefore. has a common monomial factor
b. is written as the difference of two squares
c. is a perfect square trinomial
d. i.: ©f the form $x^{2}+(a+b) x+a b$
7. i:IVEn : polgnom!al of the form $a x^{2}+b x+c$, express it in Eactorer form.
\because isi":n ${ }^{\text {a }}$ quadratic equation, determine the solution set by factoring.

RESOURCES

CBJE: : ZE 5

Vathatil., read pp. 28ó-289, Ex. 1-10 page 289.
Payne, read pp. 324-325, Ex. 22-41 odd page 325.
Woeton, read pp. 280-282, Ex. 1-33 odd page 283.

OB.JECTIVE 6

Vanatta read pp. 289-292, 293-297, 299-300, 301-305; Ex. 1-5 p. 290; 1-22 even page 292; 1-30 even p. 297; 1-14 even page 305.

Nichols, read pp. 359-360, 355-356, 381-384, Ex. 1-2 every other letter pages 360-361; 1-59 odd p. 356; 1-45 odd p. 384.

Payne, read pp. 326-335, 338; liz. 1-15 even, 31-45 even pages 326-32B; :-18 odd pages 329-330; 1-40 udd pages 331-333; 1-24 odd pr. 334-325; 1-12 odd pages 338-339.

Wootun, read pp. 282-287, Ex. 1-53 odd page 286; 1-50 odd p. 287.
Pearson, ri:ad pp. 247-249; 373-386, 392-393; Ex. 1-4 every othor Jot.ter.

 1-31 EOL p. 343.
(CONT ${ }^{1}$)

OBJECTIVE 7

Vanatta, read pp. 297-300, Ex. 1-16 even p. 300.
Nichols, read pp. 357-359, Ex. 1-59 odd pp. 358-359.
Payne, read Pp. 335-339, Ex. 1-35 odd p. 337.
Pearson, read pp. 387-388, 395-396, Ex. 1-7 even, 8 every other letter, page 388.

JBJECTIVE 8

Lichols, read pp. 361-363, Ex. 1-25 odd page 363.
Payne, pa;;e 340, 358.359, Ex. 1-19 odd pages 340-341; 1-15 odd pages 360-361; 1-26 odd page 368.

Perrson, reai pp. 389-395, 592-593, Ex. 1, 2 every other letter pages :Oリー3!1; 1-2 ZOL page 593.

OBJ. 5

0
i
I. Find the prime factors of the following:
3. $833=$
4. $180=$ \qquad
II. Express in factored form.

1. $7 x+14 y$
$\therefore \quad-2 \mathbf{x}^{2}+4 \mathbf{y}^{2}$
$\therefore \quad$ foxy $-3 a x+9 x b$
2. $9 d^{\prime}-1$
$\therefore r^{2} \cdot 9 s^{2}$
$\therefore-4 ،^{2}$
$4 y^{2}-816=$
. .. $-42 x+4 y$
$1.2 x+36$
i: $\quad 3 x=32 x y+4 y^{2}$

1II. Find the factors.
i. $x^{2}-3 x-10$
2. $c^{4}-2 c^{2}-63$
3. $18+3 x-10 x^{2}$
4. $6 y^{2}-17 y+12$
5. $8 x^{2}-10 x y+3 y^{2}$
6. $6 x^{2}-5 x-21$
7. $45 x^{2}+320 x+35$
8. $9 x^{2}+6 x-8$
4. $15 y^{2}-y-2$

1:. $30 x^{2}+39 x-9$

$$
\begin{aligned}
& \text { 1. } x^{2}-25=0 \\
& \text { 2. } x^{2}-5 x+6=0 \\
& \text { 3. } x^{2}-2 x=15 \\
& \text { 4. } x^{2}-8=7 x \\
& \text { 5. } \quad 2 x^{2}-5 x+3=0 \\
& \text { 3. } 6 t^{2}-5 x+1=0 \\
& \text { 7 } 6 y^{2}-25 y+25=0 \\
& \therefore \quad x^{2}: 9=0 \\
& \\
&
\end{aligned}
$$

Lf you have satisfactorily completed your prescribed course of study, take the LAP TEST. CONSULT YOUR TEACHER FIRST.
os.j.
2 T. Write the deitaition for each of the following

1. polynomial
2. monomial
3. binomial
4. trinomial
i. Cell if each of the following is a monomial, binomial, or trinomial.
__m.......... $3 x+3 y$

5. $0 x y z$
6. $4 \times 1 / 2$

\because. \because re ria tigre of each of the following and identify the coofficler $2 x^{2} y^{j}+3 x y^{3}+2 x^{4} y^{2}$
$\ldots . . . \therefore x^{2}+7 x^{3}+19 y^{4}$
——_ 3. $2 x y \cdot 3 x^{2}+6 x^{2} y^{3}$
$\ldots 4 \cdot 5 x^{2}+3 x y+9 x y^{2}$

-

خ. $3 x+7 y+9 x y$
IV. Rewrite the following in decending order of powers of x.

$$
\text { 1. } 3 x y+2 x^{2}+6 x^{4}-3 x^{3} y
$$

2. $7 x^{2} y-2 x^{5} y+3 x^{4}+x$

3. $x^{3}-6 x^{6}+6 x^{9}-2 x$

—6. $x^{7} y^{5}-3 x^{4} y^{2}+8 x^{2} y^{3}-2 x y$
\because. write each of the polynomials in part iv in ascending order of powers of x.
4. Work the folluwing:
5. $2 x^{5}+9 x^{2}-2 x^{3}-5 x^{4}-7 x+3+2 x^{2}-3 x+1$
6. multiply: $\left(3 x-6 x^{2}+9 x-6\right)\left(2 x^{2}-3 x-9\right)$
7. :ivide: $9 x^{N}+2-6 x^{N}+1+24 x^{N}+-3 x^{N}$

I!. Sh. w : n syntiaric division works and work the following 4.jis.isthetic division.
$; \quad x^{2}-3 x^{2}+5 x-6+x-2$
$\therefore \quad \therefore \quad \therefore \quad 200+x-5$

- +65 : x
'..'. \because fil:ce of the following:
. $2 x \cdot(3: 7+5(2 x-2)=8 x+1$
$\cdots(\because \pm 1)(\ddot{\sim}-6) \cdots-3 x(-2 x \pm 4)+6$
j. $\hat{i}+\frac{i x}{5}=\frac{-4}{3}=2 x$

4. $\frac{3 x-4}{10}-\frac{6 x+2}{5}=\frac{x-2}{2}+\frac{2 x+3}{4}$
IV. Aichols, read pp. 361-373, Ex. 1,2 EOL page 364; 1 p. 373; 1,2 EOL page 366.
V. Pajne, raad pp. 358-373, Ex. 1-27 odd p. 363; 1-25 odd page 369-370.

REFERENCES

Vanatta (abbreviation)

Vanatta, Glen D., Algebra One: A Modern Course, Charles E. Merrill Publishing Co., 1966.

Dolciani (abbreviation)
Dolciani, Mary P., Berman, Simon L., and Wooton, Hilliam, Modern Algehra, Book Two, Houghton Mifflin Co., 1965.

Nichols (abbreviation)
Nichols, Eugene D., Modern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965.

Wooton (abbreviation)
Dolciani, Mary P., Wooton, William, Beckenbach, Edwin.-F., Sharron, Sidney, Modern School Mathematics, Algebra 1, Houghton Mifflin Co., 1967.

Payne (abbreviation)
Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Francis G., Algebra One, Harcourt, Brace and World, 1969.

Pearson (abbreviation)
Pearson, Helen R., and Allen, Frank B., Modern Algebra: A Logical Approach, 1964.

BEST COPY Avallable

TATTONAL,

The words RELATION and ETINCTION in mathematics are probably new to youl Consider the OPERATICIT of AIIDITION with which you have worlen for mosi of your school years . . tt ls not only a a FUNCTIONI There are many things which you have studled and which you will study in your tuture mathematics courses that are relations and tunctions.

Throughout mathematics we pair numbers and ohtain set of ordered palrs which are rolations. These oxderot palrs and graphing (which you have previously eturitorl) pit!! serve as a basis for the study of relations and funcilons,

In this LAP you will be conc:unat grirearily with the meaning of relation and funciton. Graphing relations and functions will be stressed in order to give you cxiorim once in actually working with these ldean riphich are basic to future courses in mathematics and scienne!

section 1

Behavioral Objectives
At the completion of your prescribed course of study, you will be able to:

1. Given two iinite sets, list the ordered pairs which belong to their Cartesian Set (Cartesian Product).
2. Given two subsets of the real numbers, graph their Cartesian Set on the coordinate plane.
3. Given a relation defined by a rule of correspondence, name the ordered pairs which belong to this relation.
4. Given a relation, name:
a. 1ts domain
b. its range
5. Given a relation, determine whether or not that relation is a function where the relation is defined by:
a. a set of ordered pairs
b. a graph
c. a rule or correspondence
6. Given a relation, name its inverse.

RESOURCES

Objectives 1, 2

Nichols, read pp. 393-395, Ex. 1,3 page $394 ; 1,3,5,6$ pay,
395.
Wooton, read Pp. 377-379, Ex. 19, 20 pace 381.
Pearson, read pp. 431-435, 441-442, Fx. 1, 3, 5 pape 432; $1 \mathrm{a}, \mathrm{c}, \mathrm{f}$ pages $436-437 ; 1,3,5$ pa;ces 4.42-443.

Ohtortetve 3
Nfohnls, read pp. 396-397, Ex. page 398 1-a, c, d, f

$$
\begin{aligned}
& 2-a, c, d, f \\
& 3-a, c, d, f
\end{aligned}
$$

Payne, rear Pp. 174-175, Ex. 4, 5 page 176; 1, 4, 5, 8, 10, 11 pages 180-181.

Pearson, read page 542-543 Ex. 1, 2, 3, 5, 8a,b,c page 544.

Objectives 4, 5
Nichols, read Pp. 398-393, Ex. pages 399-404 1-a,b,d,f,g,h,j,k 3 - a,b,d,f,g,h,f,k $4-a, b, d, f, g, h, j, k$ 5, $8 a, c, e, 8$ 9 a thru n 10 a thru j
** Payne, read pp. 175-179, 466-467; Ex. 1, 2, 10, 11, 12, 15, 17, 18-21 pages 176-177; 28 page 181; $1,2,4,5,7,9-12$, 13, 14, 21-30, 33, 35 page 467.

Pearson, read pp. 545-550, Ex. la,b, 2a,b, 5a, 6a pages 545547; 1-20 pages 550-551.

* Appendix I

Objective 6
Nichols, read pp. 404-407, Ex. 1 a, f, 1,2 a, c, e, h, 1 pages 407-408.

Payne, read Pp. 481-483, Ex. 1, 2, 6, 7, 11-14, 15-17, 19, 21, 24 pages 483-434.

$$
\begin{aligned}
& \text { ․ Given } A=\{\%, 3,1\} \text { ani } B=(3,5\} \\
& \text { 1. Find } A \times B \\
& \text { 2. Find } B \times A
\end{aligned}
$$

2

3
II. Graph A \times B from Example I

III. 1. If the Universal set is the set of real numbers, which one of the following ordered pairs belong to the solut.ion set of the relation $y=2 x-1$.
(a) $(0,-1)$
(b) $\left(\frac{3}{4}, \frac{1}{2}\right)$
(c) $(10,19)$
(d) $\left(\frac{5}{8}, \frac{3}{4}\right)$
(e) all of these
2. If the Universal set is the set of real number, which of the following belongs to the solution set. r.e the: relation $2 x-3 y=1$?
(a) all ordered pairs in the coordinate piane
(b) $(5,3)$
(c) $\left(10, \frac{19}{3}\right)$
(d) $(4,2)$
(e) none of these

SELF-EVALUATION 1 (cont')

IV. List the domain and range of the following.

1. $(2,1)(2,3)(3,4)(5,6)(7,6)$ DOMAIN RANGE
2. $y=2 x+1$
3. | x | 3 | -2 | -7 | 0 | -7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y | 4 | 6 | 8 | 2 | 4 |
4. $y=x^{2}$

Sa V. Which of the following relations are functions?
(a) $\{(-1,1)(0,0)(0,1)(1,2)(1,3)\}$
(b) $\{(1,3)(3,17)(2,3)(3,2)\}$
(c) $\{(-2,1)(-1,2)(0,0)(1,2)(2,1)\}$
(d) $\{(1,1)(1,2)(1,3)(1,4)\}$
(e) none of these

Continued on the following page.

BEST COPY AYALABLE

VI. Fi, I... \because. \because ?his of some ralathoris, tell which of
 those \cdots rkei. i:" not functions.

5c VIX. Which of the following relationg is a function?
(a) $y \leqslant 2 x+1$
(b) $x=-3$
(c) $y=2 x+1$
(d) $y=x$
(e) $y>x+2$
(f) $y=-2$

6 VIII. Write the inverse of each of the following.
(1) $\{(-1,2),(2,1),(3,2),(4,7)\}=$
(2) $y=x+5$
(3) $2 x+3 y=-1$
(4) $y=2 x^{2}$
(5) $(3,1)(-2,4)(-6,8)(4,-2)$
(6) $5 x=1-y$

If you have satisfactorily completed your work, tithe the Progress test. Consult your teacher first.

Behavioral Díj. P ivis

At. the completicn o. your prescribed course of atudy, you will br: able to:
7. Given a tunction and a real number, compute the value of the tunctiun at the given number.
8. Given a function, name whether it is a linear function or a quadratic function.
9. Given a inear function, construct lits graph.
10. Given a linear function, determine its slope.
11. Given a quadratic function of the form $f(x)-a x^{2}+b x+c$ where a, b, and c are real numbers and $a \neq 0$, construct its graph.

RESOURCES

Obfectives 7,8

Nichols, read pp. 408-409, Ex. 1 a,b,e,f,h,1, 2 top p. 410.
Payne, read pp. 179-181, 349-353, 471-472; Ex. 11-1.3 page 181: $1-5,7,10$ page 473; 1-10 middle page 353; 5 page 183: 1 , 2 checkpoint page 183.

Pearson, read pp. 554-555, Ex. 1 a,b,c,d,g, 3 a,b,c-page 355.

* Appendix II

Objectives 9, 10
Vanatta, read pp. 199-204, Ex. 1-5 pages 204-205.
Nichols, read pp. 410-412, Ex. $1 a, b, c, f, 2,3 a, b, d, c, \&, 4$ pages 410-411; 1 a,b,c,d,f,g, $2 a, r, c, f, i, 1$ rasc 412.

Payne, read pp. $178-180,185-188,471-472$, Ex. 14, 16, 18,20 page 181; $1,2,5,8,12,27$ page $189 ; 13,15$ pige $37 ;$

Dolciani, read pp. 346-348, Ex. 11-18 page 348.

Objective 11

Prync, read pp. 349-353, 5x. 1-3, 7, 8, 11, 3! pi;": 4, 3-354.
Wooron, read preses 394-3:9, Ex. 1-12 pagi 359.

OBJ. 7

1. For each of the following functions, find the value indicated.

8

9 III. Graph the following linear functions, lase the grant miner that. follows.

1. $y=2 x$
2. $y-2=\frac{1}{3} x+3$
3. $y=-3$
4. $2 x+4 y=8$
5. $3 y=-2 x+6$
6. $x=5$

10 IV. Give the slope of each of the following, linear functions.

$$
\begin{array}{ll}
\text { 1. } & 2 x+3 y=4 \\
\text { 2. } & y=6 x-1 \\
\text { 3. } & y-2=\frac{1}{3} x+3 \\
\text { 4. } & y=6 \\
\text { 5. } & x=-1
\end{array}
$$

11
 that. follows.

1. $f(x)=\therefore \cdot 2 x+3$
2. $f(x)=:-2$
3. $f(x)=x^{2}+x-h$

If you have satisfactorily completed your work, take the LAP TEST. Consult your teacher first.

ADVANCED STUDY

1. Payne, Ex. 39, 40 page 184.
2. Payne, read pp. 193-195, Ex. 1-20 even page 195.
3. Dolciani, read pp. 346-348, Ex..1-10 page 348.
4. Pearson, read pp. 559-560, Ex. 1-5 page 560.
T. Write the dwa:n and "ange of the following.

RANGE

1. $(8, i)(7, i)(3,1)(7,-6)$
2. $y=x^{2}$
3. | x | y |
| ---: | ---: |
| -8 | 5 |
| 0 | 2 |
| -6 | 7 |
| 2 | 5 |
4. y is equal to twice x
5.

II. Determine if the following is a tunction. Write F if it is a function. If it is not a function, write R for relation only.
\therefore

1. $(3,6)(2,4)(-4, \therefore)(-6,4)$
\qquad 2. $\frac{x}{y} \left\lvert\, \frac{-6}{8}-\frac{2}{1}-4\right., \frac{6}{7}$
\qquad 3. $y=x+1$
\qquad 4. $(3,-3)(4,-4)(5,-6)(7,--8)(3,-9)$

\qquad 5. | x | y |
| :--- | :--- |
| 0 | 7 |

7	0
3	5

9 ! 4
5 3
6.

APPENDIX I (cont')
$-\frac{14}{4 m}$
8. $\begin{gathered}-101 \\ 0\end{gathered}$

1. Tefine linear function.

2: Define quadratic function.
3. Determine if the following are linear or quadratic.

$$
\begin{aligned}
& \text { a. } \quad y=x \\
& \text { b. } y^{2}=4 x+2 \\
& \text { c. } y=3 x^{2}+2 x+1 \\
& \text { d. } y=3 x+2 \\
& \text { e. } x^{2}+y^{2}=25 \\
& \text { f. } 2 x+3 y=7
\end{aligned}
$$

For each of the following inear functions, rewrite each in slope-intercept form, state the slope, and y-intercept, and graph each. (USE THE GRAPH PAPER THAT FOLLOWS.)

REFERENCES

Vanatta (abbreviation)

Vanatta, Glen D., Algebra One: A Modern Course, Charles F. Merrill Publishing Co., 1966.

Dolciani (abbreviation)
Dolciani, Mary P., Berman, Simon L., and Wooton, William, Modern Algebra, Book Two, Houghton Mifflin Co., 1965.

Nichols (abbreviation)

Nichols, Eugene D., Yodern Elementary Algebra, Holt, Rinehart and Winston, Inc., 1965.

Wooton (abbreviation)
Dolciani, Mary P., Wooton, Willam, Beckenbach, Edi:1 P., Sharron, Sidney, Modern School Mathematics, Algebra 1. Houghton Miffiln Co., 1967.

Payne (abbreviation)
Payne, Joseph N., Zamboni, Floyd F., Lankford, Jr., Francis G., Algebra One, Harcourt, Brace and World, 1969.

Pearson (abbreviation)
Pearson, Helen R., and Allen, Frank B., Modern Algebra: A Logical Approach, 1964.

$\therefore \quad i \quad \because \quad 1 \quad i \quad 1 \quad \%$

Sunpose vou and vamer famity are driving to annther rituy to visit some friends. At what time wil? you arrive? The answer to this question depends on a rumber of things: distance to be traveled, average speed, and hour of departure. Moreover, the problem may be complicated by the possibility that yo's may encounter unforseeable delays caused by road construction or unusually heavy traffic.

In a situation like the one described, the exact time of arrival is probably not critical. But, there are manv situations that do require a very careful consideration of time and other factors. Think of the precise calculations that are involved in launching and controlling a rocket so that a satellite will be put into orbit around the moon or land on the moon in a specific spot. A business man of ten must make computations that will be the basis for very important decisions.

These are only a couple of the everyday situations to which mathematics must be applied. Somtimes the mathematics required is only simple arithmetic, but as civilization grows more complex we find an increasing need for algebra and higher mathematics. In this LAP, you will learn how to use algetra to solve ordinary problems that arise often.

BEST COPY AVAILIABLE

Section 1

BFHAVIORAL OBJFCTIVES:

1. Given any word prohlem involining rumher relations, you will be able to write andor idenifify in equation and/or determine its solution.
2. Given any word problem involving consecutive integers, you will be able to write and/or identify an equation for it and/or determine its solution.

RESOUPCES
Objective 1 (work at least three problems from each group.)
Dnlciani, Book 1, redd paqes 166-167; Ex. 1,2,4,10,19 page 168.
Nichols, Book 1, read pages 214-216; Ex. 6-10 page 217.
Vanatta, Book 1, read pages 154-156; Ex. $1,2,8,10,14$ page 156.
Objective 2 (work at least 9 problems)
Dolciani, Book 1, read pages 170-171; Ex. 1,4,7,10,13 bottom page 171.
Nichols, Book 1, read pages 225-227; Ex. 1,2,4 page 227.
Vanatta, Book 1, read pages 157-158; Ex. 1-6, 8,9 page 159.

BEST COPY AVAILABLE

1. Work the follorifing
2. H,… : .
 how many does win ar an
3. In Sun': hank some nimes and some dimes. She has two more dimes tin sir :

number.
4. Tire sunn n in $n!$? times a number is 6 . Find the
number.
5. Serin mire than five times a nome is 27. Find the
6. The sum of twice a number and 6 equals the sum of three times the number: and 9. Find the number.
their sum n is 1 , ${ }^{6}$ ind the rompers.
7. Taking one .'serf of a number rives the same result as subtracting three from the number. F .f ? number.
\qquad 8. Multiplying i number kv 3 and e- ting 5 to the product gives the same result as ru:? tiflying tie rurbor ho ...d. What is the number?
II. Work the following. Show :mir work.
8. The sum of $t: n$ ronsecutive integers is -11 . Find the two intoners.
9. Find three consecutive integers if the sum of the first and the this: :- 73.
10. The langer n. consecrative even ininnors is 3 less than one mai, the smelter. Firdtlin number.
\qquad 4. Find three con::f itive odd intege:er $\because \cdot \operatorname{non}$ sum is 33. Find the numbers.
11. The sum of four mica.utive int \cdots is 102. Firs the integers.
12. There are tee . \because. dive rite :-rs filch that two t times the first plat t: second, pin: 50 . Find the numbers.
13. Find two even come ri"ive ; fore: that thees times the smaller equals s: : $\therefore \% \boldsymbol{f}^{\prime} \cdot$ earner.
14. Find five consecutive intcrow such that the largest is twice the smallest.
15. The product of two consecutive integers is 6 more than the square of the sutler. :ind the integers.

BEST COPY AYALLABLE

If you have satisfactorily conpleter vour bark, take the progress Test. Consult your teacher first.

Section 2 Motion Problems

BEHAVIORAL OBJECTIVES:

3. Given any simple motion problem using the distance fonmula, you will be able to write and/or identify its equation and/or detenmine its solution.
4. Given any of the following three types of motion problems: 1 . meeting, 2 . overtaking, and 3. round-trips, you will be able to write and/or identify an equation for it and/or detemine its solution.

RESOURCES
Objective 3
Vanatta, Book 1, read pages 160-161; Ex. 1,2,3,6,7,8 pages 161-162
Objective 4 (work all problems)

1. Meeting Problems: Dolciani, Book 1, read pages 178-180; Ex. 1, 2,5 pages 180-181.

Vanatta, Book 1, read pages 164-166, Ex. 1,2 pages 166-167.
2. Overtake Problems: Dolciani, Book 1, Ex. 5,6,7,8 pages 180-181 Nichols, Book 1, read page 226; Ex. 12 page 227. Vanatta, Book 1, read pages 164-166; Ex. 3, 4 page 167
3. Round-trip problems: Dolciani, Book 1, Ex. 9-12 pages 180-181 Nichols, Book 1, Ex. 10 page 227.

BEST COPY AYNLABLE

!"•: •AIUATIUN : :

$08 J$. 3

1. Work the finllc::inn. Show your work. Put your work on the back of this sheot or cil an extra sheet.
\qquad 1. A train can travel 500 miles in 6 hours. Find its average speed.
\qquad 2. A famtly wishes to travel about 8 hours per day on a vacation. If they drive at an average rate 50 miles per hour, what distance will they cover in 4 days?
\qquad 3. A tourist travels at a rate of 45 miles per hour. How long will it take him to travel 135 miles?
2. A train averages 50 miles per hour for 100 miles in open country. In populated areas it averages 40 miles per hour for the next 100 miles. What is his average speed?
II. Work the following. Show your work.
3. Two men start out from the same city. One travels due north at an average rate of $35 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and the other travels directly south at a rate of $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. In how many hours will they be 250 miles apart?
\qquad 2. One train starts from Charleston going to Atlanta at a rate of 50 miles per hour. At the same time a train starts at Atlanta going to Charleston at a rate of 45 miles per hour. If Charleston is 285 miles from Atlanta, how long will it be before the trains pass?
\qquad 3. Mr. Jones left home at 7 a.m. and drove at an average rate of $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. At what time did he overtake his father?
\qquad 4. A new car leaves Detroit traveling at an average speed of $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. One and one-half hours later another car leaves Detroit on the same route. If the second car catches up with the first car in $4 \frac{1}{2}$ hours, find the speed of the second car.
\qquad 5. Having 6 hours at his disposal, a man decided to ride into the country with a friend and walk back. If the friend drove at an average speed of $33 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , and the man could walk $3 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., how many miles could he ride and have time to walk back?
\qquad 6. Jack walked to Jim's house at $3 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. He borrowed Jim's bicycle and rode home at $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. If the entire trip took 6 hours, how far is it to Jim's house?

If you have satisfactorily completed your work take the Frogress Test, consult your teacher first.

Section 3: Mixture Problems

BEHAVIORAL OBJECTIVES:

5. Given any mixture jroblem, you will be able to write and/or identify an equation and/or determine its solution.
6. Given any geometry word problem involving 1. perimeter, 2. area, 3. supplementary angles and 4. complementary angles, you will be able to write and/or identify an equation for it and/or write its solution.

RESOURCES
Objective 5 (work all problems)

1. Simple mixture problems:

Dolciant, Book 1, Ex. 2,3,4,5,8,9,12, pages 183-184
Nichols, Book 1, Ex. 1,3,4, page 216
Vanatta, Book 1, Ex. 17, page 177
2. Solution problems:

Dolciani, Ex. 1,3,4,5,13 page 31:
Nichols, Ex. 10,11,12 page 238
Vanatta, page 175 nos. 11 and page 178 no. 6

Objective 6 (work all problems)

1. Perimeter problems: Vanatta, Ex. 1,2,10 page 170 Dolciani, Ex. 6,7,16 page 168
2. Area problems: Dolciani, Ex. 12, 13 pages 168-169 Nichols, Ex. 1 page 232
3. Supp. angles: Vanatta, Ex. 5,8 page 170

Dolciani, Ex. 5,6 page 177
4. Comp. angles: Vanatta, Ex. 4,8 page 170 Dolciani, Ex. 1,4 page 177

Also for Supp. and Comp. angles work Nichols page 234 no. 28.

OBJ.
5 I . irk the following. Show vour work.
\qquad 1. Tea worth $95 \notin$ a pound is to be mixed with tea worth $\$ 1.25$ a pound to maka 20 nouncls of a mixture worth $\$ 1.15$ a pound. How many pnurels of each would you use?

2. A candy store has on hand 2.5 pounds of candy worth $\$ 1.90$ a pound. How many pounds of $\$ 1.50$ candy shall trey mix with it so that the mixture can sell at $\$ 1.75$ a pound?
\qquad 3. Ticket sales to a French Club play brought in a total of $\$ 77$ for 136 tickets sold. If this included student tickets at 50¢ each and adult tickets at 75申 each, how many of each kind were sold?
. _ _ 4. Fred paid $\$ 2.45$ for 50 stomps. He bought air mail stamps at 8 cents each, as wall as some 5-cent stamps and some 4 -cent stamps. If he bought 5 times as many 5 -cent stamps as air mail stamps, how many of each kind did he buy?
\qquad 5. How much water must be added to 16 pounds of a 25% salt solution to reduce it to a 15% solution:
6. A druggest has 40 ounces of a 10% acid solution. How much pure acid must be added to make it a 40% solution?
7. How much water must be evaporated from 60 pounds of a 5% starch solution to make a 20% solution?

6 II. .'rrk the following. Show your work.
\qquad 1. The length of a rectangle exceeds twice its width by 7 feet. The perimeter of the rectangle is 74 feet. Find its dimensions.
\qquad 2. The area of a 20 -foot square equals the area of a rectangle 25 feet long. How wide is the rectangle?
\qquad 3. Find two supplementary angles if one is four times the other.
\qquad 4. Find two complementary angles if one is 30° more than the other.
5. How larige is an angle if the measure of its supplement is 15^{0} less than four times the measure of its complement?

If yril have done your work satisfactorily, you may either go into advarired study or to progress test. There is a progress test on this section and then the l.AP Test.

ADVANC.F.D STUDY

Section 1:

Work any 5 of the following problems.
Dolciani page 172 nos. $14,15,16,17,18$
Nichols page 227 nos. 7, 8, 9

Section 2:

Work any 5 of the following problems.
Dolciani page 182 nos. 13, 14, 16; page 191 nos. 56,58
Nichols page 176 nos. 14; page 177 no. 4

Section 3:

Work any 10 from group 1 or any 10 from group 2 or any 10 from groups 1 and 2.

1. Dolciani page 184 nos. 13, 14; page 311 nos. 9,10; page 318 nos. 1, 2, 3, 4, 5

Vànatta page 176 nos. 9, 20; page 17P, no. 7
2. Vanatta page 179 no. 27 ; page 171 no. 6 Dolciani page 212 nos. $1,2,3,5,6,7,11$; page 177 nos. $9,11,12$ Nichols page 234 nos. $21,22,23,24$

